
November 1992 Report No. STAN-CS-92-1459

Also nunbered a CSL-TR-92-555

AD-ý4.262 84 Thesis

Exploiting the Memory Hierarchy in Sequential and
Parallel Sparse Cholesky Factorization

by

Edward Rothberg

_-I

Department of Computer Science

Stanford University

Stanford, California 94305

ýPpjvre(ý tot°t•r I" ýi' ..

""93'7572

S02 0)6

fat AponWREPORT DOCUMENTATION PAGE ~

*Wft o" 04 Vwinwe" for a" caiftv all go0iew l amsW Vtoqwova owd CI~s %V4 o.w tiitol. '10%" v %iwe ofilvbi -qwwof Isw I~ *o,. riIU

1. AGENCY USE ONLY (Loav. bI 1*) . RPORT OATI 3. REP1ORT11 TYPE ANO DATES C 'V~t

Z. TintE AND susfime S. - UNOING NUMBERl"

Exploiting the Memory Hierarchy in Sen 'uentiat1 and

Parallel Sparse Cholesky Factorizaition IN000()39-9l- -ý 01 !'8

6. AUTROARS1

Edward Rothberg,

7. PERFORMING ORGANIZATION NAME(S) AND AOOR1SSSIS) I. PERFOR1141MING ORGANIZAt"O
REPORT NUMBIIIER

Stanford University CSL-TR-92--55ý
Computer Science Dent. & Electrical 1'nrgineerin-tv
Stanford, CA 94305

I. SPONSORING/ MONITORING AGENCY NAME(S) AND AOORESS(ES) 10. SPONSORING /MONIITORING
AGENCY REPORT NJMSIR

DARPA
Arlington, VA

111. SUPPLEMENTARY NOTES

Ila. DISTRIBUTION/AVAILAM.ATY STATEMENT 12b. OISTRIBUTION COO[

unlimited

13. ABSTRACT (Nswa~muen00woe*W

Cholesky factorization of large sparse matrices is an extremely important computation, arising in a wide range of domains including

linear programming, finite element analysis. and circuit simulation. This thesis investigates crucial issues for obtaining high performance

for this computation on sequential and parallel machines with hierarchical memory. systemns The thesis begins bN pros ding the tit,!

thorough analysis of the interaction between sequential sparse Cholesky factonration methods and mnemory hicrailbchw %kv lsk '0

popular existing methods and find that they produce relatively poor memory hierarch-, perforoian.e. The mnethods, art: extciidcd, u-mgq

blocking techniques, to reuse data in the fast levels of the metmoty hierarchy. This inicrea~sed reuse rs shown to provide -i three-fold

speedup over popular existing approaches (e.g. SPARSPAKI on modern Workstations.

The thesis then considers the use oif blocking techniques titt parallel sparse lactori/ation. We tirst describe- parallel moehod, \,%e hbase

developed that are natural extensions of the sequential approach described above. These miethods distribute panelsý (sets of cootigvuqu

columns with nearly identical non-zero structures) among the processors. The thesis shows that fopr small parallel machines. t1,c e01 ' rlin

tmethods again produce substaottal performance improvements over existing methods. Aframiework is provided foi undeitatdindrn the

performance of these methods, and also for understanding the limitations inherent in them Using this, framework. the thicsi sho\%,

that panel methods are inappropriate for large-scale parallel machines because thev do not expose enough cone:uineo\ The lhe,is
then considers rectangular block methods, where the sparse matrix is split both vertically and horiionladlv. These methods addres. the,

concurrency problems of panel methods, but they also introduce a number of complications, Primlary, 'among these are issue-. of dioosrng

blocks that can be manipulated efficiently and structuring a parallel computation in terms of these blocks, The thesis describes solujtions

it) these problems and presents performance results from an efficient block method implementation

14. SUBJECT TERMS IS. NUMBER Of PAGES

Hierarchical-memory machine's, sparse cholesky factorizat ion, 153

parallel processing 16. PRICE coot

17 SCUCLASSIFICATION lB. SECURITY CLASSIFICATION 1t. SECURITY CLASSIFICATION 120. U&UTATION OF AIISTRACT

EXPLOITING THE MEMORY HIERARCHY IN
SEQUENTIAL AND PARALLEL SPARSE
CHOLESKY FACTORIZATION

Edward Rothberg uric QUA -

Technical Report No. CSL-TR-92-555 .
13Y1K- -

Dint U, I
November 1992

This thesis has been supported by DARPA contract N00039-91-C-0138.
Author also acknowledges support from an Office of Naval Research graduate
fellowship.

Copyright 0 1992

by

Edward Rothberg

EXPLOITING THE MEMORY HIERARCHY IN SEQUENTIAL AND

PARALLEL SPARSE CHOLESKY FACTORIZATION

Edward Rothberg

Technical Report: CSL-TR-92-555

November 1992

Computer Systems Laboratory
Departments of Electrical Engineering and Computer Science

Stanford University
Stanford, California 94305-4055

Abstract
Cholesky factorization of large sparse positive definite matrices is an extremely important computation, arising in
a wide range of domains including linear programming, finite element analysis, and circuit simulation. This
thesis focuses on crucial issues for obtaining high performance for this computation on sequential and parallel
machines with hierarchical memory systems. Hierarchical memory machines offer the potential to perform this
computation both quickly and cost-effectively. By structuring memory in the form of a hierarchy, with a small,
high-speed cache near the processor and larger but slower levels further away, these machines allow
appropriately-structured computations to behave as if all their data were stored in very fast memory. The thesis
investigates how well sequential and parallel Cholesky factorization algorithms can make use of a hierarchical
memory organization.

The thesis begins by providing the first thorough analysis of the interaction between sequential sparse Cholesky
factorization methods and memory hierarchies. We look at popular existing methods and find that they produce
relatively poor memory hierarchy performance. The methods are extended, using blocking techniques, to reuse
data in the fast levels of the memory hierarchy. This increased reuse is shown to provide roughly a factor of
three increase in performance on modem workstation-class machines. The primary contribution of this work is
its investigation and quantification of the specific factors that affect sparse Cholesky performance on hierarchical
memory machines. This work also presents and compares a disparate set of factorization methods within a
consistent framework, thus isolating and identifying the important similarities and differences between the
methods and unifying a large body of previously uncomparable work.

The thesis then studies the use of blocking techniques for parallel sparse Cholesky factorization. The sequential
methods are quite easily extended to small-scale multiprocessors (2-16 processors), producing parallel methods
that make excellent use of memory hierarchies. Data reuse is achieved by working with sets of contiguous
columns, or panels. However, important scalability questions arise concerning the use of panel-oriented
methods on larger parallel machines. At issue is whether panels can be made large enough to provide significant
data reuse while at the same time providing enough concurrency to allow a large number of processors to be
used effectively. The thesis uses a parallel performance model to understand the performance of these methods
and to show that such methods are in fact inappropriate for larger hierarchical memory multiprocessors.

The thesis then proposes an alternative parallel factorization approach that manipulates rectangular sub-blocks of
the matrix. This block-oriented approach is found to overcome the scalability limitations of the panel-oriented
methods. However, several issues complicate its implementation. Primary among these are issues of choosing
blocks in a sparse matrix that can be manipulated efficiently and structuring a parallel computation in terms of
these blocks. The thesis presents solutions to these problems and investigates the parallel performance of the
resulting methods. The contributions of this work come both from its theoretical foundation for understanding
the factors that limit the scalability of panel- and block-oriented methods on hierarchical memory
multiprocessors, and from its investigation of practical issues related to the implementation of efficient parallel
factorization methods.

Key Words and Phrases: Hierarchical-memory machines, sparse Cholesky factorization, parallel
processing, sparse matrices.

This report is also referenced in Computer Science Department as STAN-CS-92-1459.

Acknowledgements

I would like to thank everyone who has helped me during my years in graduate school In ,artirular.

I would like to thank my principal advisor. Anoop (;upta. His insightful comritnts and s,',intigi-,

boundless enthusiasm for the field were an enormous help and were greatly appreciated I wuldi

also like to thank John Hennessy and Gene Golub for serving on my reading committee I would

also like to thank the members of the DASH group. particularly Aaron (;oldberg, JP Singh. aid

Michael Wolf, who have been a great pleasure to work with. Finally. I would like ti thank miy wife

Jessica for her constant support.

I would also like to acknowledge support from an Office of Naval Research graduate fellowship

and from DARPA grants NaUQ14-87-K-(3828 and N00039-91-C-038,

iii

Contents

Abstract

Acknowledgements iii

1 Introduction I

1. 1 Trends in Computer Architecture 1
1.2 Algorithm Design for Hierarchical Memory Organizations . . . 4

1.3 Organization of Thesis and Summary of Results 6

2 Sparse Cholesky Factorization 8

2.1 Matching Non-Zeroes ()
2.2 Elim ination Tree 10
2.3 The M ultifrontal M ethod 11

2.4 Supernodes ... 13
2.5 Generalized Factorization 14

3 Sequential Sparse Cholesky Factorization 16

3.1 Introduction ... 16
3.2 Experimental Environment 17

3.3 Sparse Cholesky M ethods 201

3.3.1 Assorted Details

3.3.2 Column-column Methods21

3.3.3 Supernode-column Methods
3.3.4 Column-supernode Methods 3f)

3.3.5 Supernode-pair Methods 31

3.3.6 Supernode-supernode Methods 325

3.3.7 Supernode-matrix Methods i1

3.3.8 Summary .

3.4 Cache Parameters . .. 5

34.1 Line Size .. 5

3.4.2 Set-Associativitv -|;

3.4.3 Cache Size .T..4

3.5 Alternative Blocking Strategies

3.5.1 The Benefits of Blocking .51

3,5.2 The Impact of Cache Interference 54

3.3.3 Advantages and Disadvantage of Square-Block Mlethods

3.6 Discussion

3.6.1 Square-Block Metvhods- Performance Improvement on Benchmark Machins 6i:3

3.6.2 Improving Multifrontal Performance I

3.6.3 C hoice of Prim itives ,. .. .

3.6.4 Performance Robustness 65

3.7 Related Work and Contributions , 6ti

3.8 Conclusions 67

4 Evaluation Environment for Multiprocessors 68

4.1 Introduction 6, 6
4.2 The Stanford DASH multiprocessor T
4.3 Perform ance M odel

4.3.1 Computation Costs 71

4.3.2 Cache Miss Counts .. 71

4.3.3 Communication Costs 73

4.4 Benchmark Matrices

5 Parallel Panel Methods 76

5.1 The Panel Multifrontal Method 77
5.1.1 G eneral Structure . . .'.. 77

5.1.2 Multifrontal Method . .. 79

5.1.3 Parallel Multifrontal Example

5.1.4 Implementation Details
5.1.5 Distributing the Matrix Among Processors .'

5.1.6 Proportional Mapping

5.1.7 P anels
5.1.8 Supernode Amalgamation

5.2 Parallel Performance

5.3 Performance Bounds

5.3. 1 Maximum Load Load Balance and Load Elfficienc'y o

5.3, 2 Critical Path ...

Vi

5.3.3 Performance (Compared to Bounds -7

5.4 Improving Performance o;

5.5 Panel Size Selection

5 6 DASH Performance li

5.7 Contributions

5.8 Conclusions.

6 Dense Block-Oriented Factorization 103

6.A Introduction .

6.2 Block-Oriented Factwrization 1 .I

6.3 Parallel Factorization Algorithms

6.3.1 Block Mapping.....

6.3.2 Destination-computes method ,

6.3.3 Source-computes method f 09

6.314 Summary i 11:

6.4 Predicting Performance I113

6.5 Model Verification . . . 1

6.6 Conclusions . .. 1i.

7 Sparse Block-Oriented Factorization 117

7.1 Introduction .. . I 17

7.2 Block Formulation Is1

7.2. 1 Block Decomposition 1 . .5

7,2.2 Structure of the Block Factorization (Computation 121

7.2.3 Performance of Block Factorization 123

7.2.4 Improving Performance 1 .

7.2.5 Block Decomposition Summary . I

7.3 Parallel Block Method 12,

7.3.1 Parallel Factorization Organization 1n.2

7.3.2 Block Mapping for Reduced (Cormmunication 12 1

7 3.3 Enhancement. Domains 11

7 4 Evaluation 1:1:1

7.4 1 Small Parallel Machines 1333

7 4 2 Moderately Parallel Machins I:;I

7..4 3 Massively-Parall,,l Machinis -
7.4 4 Summary 1 I

7 5 Discussion '

7 6 Future Work

',11

7 7 Related Work and Contributions i ;

7-8 Conclusions 14 7

8 Conclusions 148

Vill

List of Tables

1 Benchm ark m atricesI

2 Benchmark matrix statistics..................................I . .

3 Performance of column- column methods on DECstatiori 3100 and IBM RSI/6000

Model 320. 2

4 References and cache misses for column-column methods, 64K cache with 4-hb.te cache

lines. '23

5 Performance of supernode-column methods on DECstation 3100 and IBM RS/600()

Model 320....... 27

6 Mean performance numbers on DECstation '1100 and IBM RS/6000 Model 320. '2 7

7 References and cache misses for supernode-column methods, 64K cache with 4-hxte

cache lines. 2S

8 Mean memory references and cache misses per floating-point operation. References

are to 4-hyte words. Cache is 64 KBytes with 4-byte lines. 29

9 Performance of supernode-patir methods on OECstation 3 100 and I BM RS/6000 Model

10 References and cache misses for supernode-pair methods, 64K cache with 4-byte cache

lines......... 3

11 Mean performance numbers on DECstation 3100 and IBM RS/6000 Model 320. 3

12 Mean memory references and cache m isses; per floating-point operation. References

are to 4-byte words. Cache is f ! KBytes with 4-byte lines.........

13 Performance of supernode-s'iper node methods on DEC'station 3100 and IBM RS/6000

Model 320..... .ý.3

14 References and cache misses for supernode-supernode methods, (4K cache with Ph-ytte

cache lines.. i

15 Mean performance numbers on DEC'station 31100 and IBM RS/6000 Model 320W

16 Mean memory refere~nces and cache misses per floating-point operation. Referellcesý

- are to 4-byt~e words. Cache is 64 KBytes with 4-hyte lines.

ix

17 Performance of supertnode-niatrix methods on DE('station : 100 and IBM RSiffuuo

Model 320 1'

18 References an-1 cache misses for supernode-matrix methods. 64K r-ache with 4-bk.e

cache lines.3

19 Mean performance numbers on DECstation 3100 and IBM RS/6OOoo MNlodel 320 1.1

20 Mean memory references and cache misses per floating-point operation References
are to 4-byte words. ('ache is 64 KBytes with .4-byte lines. . 4

21 Effect of increasing cache line size from 4 bytes to 64 bytes. for 64 K Byte cache

Memory system traffic is measured in 4-byte words......
22 Effect of increasing cache set-associativity from direct-mapped to 4-way set-a-ssocjatie

('ache is 64 KBvtes ani line size is 64 bytes Traffic is measured in 4-byte words.,-
23 Performance of square-block uncopied methods on DECstation 3100 and IBM RS/6000

Model 320
24 Performance of square-block copied methods on DECstation 3:100 and IBM RS/i6000

Model 320.

25 Percentage of panel-blocked performance achieved with square-blocked codes on

DECstation 3100 and 1BM RS/6000 Model 320.

26 Increase in memory references due to data copying... o2

27 Benchmark matrices 7
28 Benchmark matrix statistics

29 Frequency of relative index computations and scatters for block method, compared

with floating-point operations (B = 16)121
30 Frequency of relative index computations and scatters for block method, compare(d

with sequential multifrontal method (B = 16)..t)

31 Supernode amalgamation results .1....... 127

X

List of Figures

I \1odert. sequential mnac.chine)rganizat io

2 Modern paralhl rnachi ne organtzationrk

3 Non-zro structure of a rnatrixA and - ts factor 1,

4 Elimination tree of A.

5 Update matrix for column 2 12

6 Assembly of update .natrix from column 2 into ipdate matrix 4 dlulnit 12

7 Tae CornpleteSuper(, primitive 3!,1

The ModifySuperBySuper() prIMtV,' 37

9 Increase in data traffic ..ue to longer cache hnes (ache siz#, 1.i 64 Bh liete in all ' .,,- 17

U) Cache miss bhavior for ýarious methods. matrix B('SS'TK 15

i1 Update ,reation

12 Panel blocking for update creation

13 Matrix-matrix multipyv as a series of matrix-vector multiplies 7)

14 Submatrix blocking for update creation

15 Cache miss behavior for multiftontal supernide-matrix method, using sqiar, bhoks

for matrix BCSSTKI5. ('ache sizes 2K. 8K, and 32K 7,

16 Cache miss behavior for multifrontal supernod-matrix method usir.4 smluar,. i r,-ks

and copying, for matrix BCSSTKIS. -,7

17 Cache miss behavior for various methods, matrix B('SS'TK15 S-S i. Supemrn ,id-

supernode. S-M is supernode-matrix.

18 A simple grid example 7

19 Grid example

20 Parallel speedups for two sparse matrices.

21 Parallel speedups for two sparse matrw-es. versus perforniance upper holunds

22 Maximum processor utilizations when considering load imbalance alone, ',

23 Fraction of all floating-point operations performed within ,wned dammnsait

24 ('oncurrency in sparse problems .,.

25 C'ommunication to computation ra' ,'s for sparse problmnls

26 Performance for panel siz•e of s relati,,' it., 1rnrfornauric, 4 l-s-•t ptwi-) ,

27 Performance relative ti best caes,

28 Parallel speedups on I)AStt machin, 10

29 Blocks used for update)peratlfons 10

30 A 2-D round-robin distribution.

:31 Performance results for destination-cmipuutes method r., 204s [P = 64 Ii(

:2 Performance results for source-computes method 1 = 20)4i .' .1 i6 li

33 A simple block example ,. . .. I1!

34 Performance results for prioritized source-computes iiethod nr 20-14i. P f--4 1

35 Performance versus problem size for destinatiun-computes method 11

36 Simulated and actual speedups for destination-computes method, for 25 and 3;6 pro-

cessors. Actual speedups are from the Stanford DASH ma, iine 1ll

37 Example of irregular block interaction Dotted lines indicate boundaries of affected

areas..................................... 119

:18 Example of globally partitioned matrix. 120

:39 Performance of a sequential block approach, relative to a sequential left-looking

supernode-supernode approach, on a single processor of the Stanford DASH machine 124

40 Average floating-point operations per block operation 12t

41 Average floating-p ci.t operations per block operation, before and after supernode

amalgamation ... 127

42 Performance of a sequential block approach. before and after supernode amalgama-

tion. relative to a sequential left-looking supernode-supernode approach 12'S

43 Parallel block fan-out algorithm 130

44 Parallel speedups for block fan-out method on SGI 4D-280. B = 24 134

45 Simulated parallel efficiencies for block fan-out method. B = 24 135

46 Simulated parallel performance, compared with load balance upper bound RB = 14) 1:35

47 Parallel utilization upper bounds due to load balance for BCSSTKI5 and BCSSTK29.

compared with load balance upper bounds for dense problems (B = 24). In both plots,

sparse and dense problems perform the same number of floating-point operations, 13;

48 Communication versus cornpuation for the block fan-out method ... 13s

49 Parallel speedups for block approach for BCSSTK15 and BCSSTK29 13,

50 Parallel speedups for block approach on the Stanford DASH machine. 130

51 Communication volume of block approach, relative to a panel-oriented parallel mul-

tifrontal approach. 1.4o

52 Performance of block approach relative to performance of panel approach. ll

53 Communication pattern for row/column multicast ..

Xii

Chapter 1

Introduction

Large sparse positive definite systems of linear equations arise in a wide variety of application
domains, including linear programming, finite element analysis, and process simulation. The most

widely used method for solving such systems is sparse Cholesky factorization. Given a system Ax = b.

sparse Cholesky factorization decomposes A into the form A = LLT, where L is lower triangular

with positive diagonal elements. The system is then solved by solving Ly = b and Lrx = y. both of
which are easily done since L is lower triangular.

Sparse Cholesky factorization is unfortunately not without its limitations. Perhaps the most

important is the computational demands it makes. It is the bottleneck in applications that can

require days or even weeks of machine time to solve today's problems, and in many domains the

only thing preventing people from solving larger problems is the enormous runtimes they would

require. As a result, there is great interest in obtaining higher performance from the sparse Cholesky

computation.

Our goal in this thesis is to understand how this higher performance may be obtained. Our
primary emphasis will be on obtaining not only higher performance, but also cost-effective perfor-

mance. That is, our focus will be on issues that are important for obtaining high performance from

inexpensive machines.

1.1 Trends in Computer Architecture

Recent trends in computer architecture have made it clear that affordable high performance is indeed

achievable. The trends we are referring to are the enormous increase in the speeds of inexpensive.

commodity microprocessors and the emergence of parallel processing technology to interconnect

large numbers of these processors together. Engineers will soon see affordable machine" with clrie

to I GFLOPS performance, and active research is being done on I TFLOPS machines.

While the details of high-performance machines naturally vary quite a bit across machines. at t he

CHfAPTER 1. INTRODUCTION 2

Processor

Level 1 cache

Level 2 cache

Main memory

Figure 1: Modern sequential machine organization.

same time their most important aspects appear to have converged. An overview of the most common

sequential machine organization is shown in Figure 1. Processors with clock speeds of 100 MHz are

not uncommon in today's machines. with 200 MHz clock speeds on the horizon An important aspect

of these processors for our purposes is their potential for extremely high floating-point performance.

Today's processors may perform as many as 2 floating-point operations per clock cycle (although

some perform only one operation every 3 to 5 cycles).

Of course, floating-point computations can only be performed as fast as the relevant data can be

fed into the floating-point units. Unfortunately, the speed of the memory from which this data is

fetched has not kept up with the speed increases of processors. While it is possible to build a main

memory that can provide data to the floating-point units as quickly as they can perform operations

on this data, the cost of such a memory system would be enormous. The majority of the cost of a

vector supercomputer, for example, goes to its high-bandwidth memory system.

In microprocessor-based machines, this memory bottleneck is alleviated through the use (f hi-

erarchical memory organizations, in which one or more levels of cache are interposed between the

fast processor and the slow, inexpensive main memory. The caches are made up of small amounts of

very high speed memory. When the processor references a memory location, a copy of that location

is held in the cache so that a later reference to that location can be serviced quickly.

As for the hierarchy, the first level cache is frequently found on the actual processor chip. Fast

processors can often not afford to go off-chip to fetch data. On-chip first level caches are typically

quite small, since space is tight on the processor chip. Common on-chip caches today are between

8 KE'ytes and 32 KBytes, and they typically service proceEs:or memory requests in a single processor

cycle.

While many machines are built with only a single level of cache, two-level caches are also quite,

CHAPTER 1 INTRODUCTION

'PE . PE PE PE PE PE\ / N. . ..

__ -6

IMemry° I <e°
Interconnection

PE" PE PE Network PE PE PE

C C C CE C C

Figure 2: Modern parallel machine organization

common, especially in machint-s with small on-chip first level caches. The second-level cache ,

generally significantly larger than the first level cache, typically containing between 64 KBvtes and

I MByte of relatively fast memory. Access times are larger than those of the first level cache.

requiring anywhere from 5 to 20 cycles, but they are still significantly faster than main nerlor.

accesses, which may take anywhere from a few tens to a hundred or more cycles.

Parallel machine organizations appear to have converged as well, with virtually all modern paral-

lel machines looking like the machine shown in Figure 2. The memory hierarchy in parallel machines

is further extended due to the introduction of a distributed main memory. That is, main nieniorv
is distributed among the processors, with some portion of the global main memory being physically

local to each processor. A processor/local memory combination is typically referred to as a cluster

A cluster often contains a single processor. although clusters with multiple processor are becoming

more common. Examples include the Stanford DASH machine (4 processors per cluster) [271. the

Intel Paragon MP node (4 processors per cluster), and the Thinking Machines ('MS (4 vector units

per cluster).

In distributed memory parallel machines, access locality is even more important than it is in

sequential machines. A memory access from a processor to a non-local portion of memory is inan,

times more expensive than a reference to local memory (typically three or more times) Furtherno,,r,

the interconnect network generally provides relatively low aggregate interprocessor coliniInI ic1at ioh.,i

bandwidth. It could not possibly support the traffic that would be generated if processors were t,ý

access non-local memory locations frequently.

We should note that there are a variety programming models for distributed- mtemOry ItIA.hio •,

CHAPTER I. INTRODU'CTION

The two most common are the message-passing model, where a prcessor cal, a,'r'ss data i.n 4 ,inr

processor's memory only by receiving a message from the other proeessor, and th ,,har,,, mnrn'o,'r
or uniform-address-space model, where a processor can access any location n th,- entire n achmni
with ordinary memory references. This thesis will make few a,,sumptions about which prugranimui;
model a parallel machine provides.

The appeal of a hierarchical memory organization. whether for sequential or parall'l m ach,-
is clear. Machines with such an organization offer both cost-effective and scalable perfornian'-

They are cost-effective because the individual components that they are built out of. including !'ýih
speed microprocessors, slow main memories, and small amounts of hiigh-speed cache ment•r'. At"-

all inexpensive. They are scalable because the machines themselves have no inherent perforrnitr.',

limitations, For parallel programs that make good use of the memory hierarchy so that prces•,,r,
service the vast majority of their memory accesses from their caches and their local niemories. th,.
performance of the program can be improved by adding more processors iwith the corresponding

caches and local memories).

1.2 Algorithm Design for Hierarchical Memory Organiza-

tions

The performance of a computation on a machine with a hierarchical memory organization wdil
clearly depend on the extent to which that computation reuses data in the faster, closer levels of the
hierarchy. Unfortunately, the majority of linear algebra computations, as they would most naturaitk
be written, make very poor use of a memory hierarchy. In streaming through large matrices, these,
computations wind up displacing data items from the cache before they are reused, resulting in
extremely high cache miss rates and low performance.

As an example. consider the matrix multiplication Z = NY, where all matrices are N X N

for i = I to N do

f or j = I to N do

for k = 1 to N do

Z[i,j] = Z[i,j] + X[i,k] * Y[kjl

The entries in X, Y, and Z are each reused N times throughout the course of the computation

thus providing significant opportunities to reuse data in a memory hierarchy. Unifortunately, it I-
extremely unlikely that the Y elements will be retained in a cache. Between one use of an et)ieni

of Y and the next, the entire Y matrix is referenced. Unless the whole Y matrix fits in the ,ach.
(an unlikely prospect), each reference to Y will result in a cache rniss.

Fortunately, many such computations can he reorganized through the uIse of hlocking techniqui...

CHAPTER I. INTRODUCTION

to make good use of a memory hierarchy A comnputation is said to be 1l,-k-i wh,-n ji r,,..trili or i

so that a block of data that fits in the cache is Intentpnallv reused aft,r it hli, b,,,n 1,t-.i.-, In !K.-

matrix multiplication example above. the ri•omputation w,,uld he ,, w hkd a.s f,,iw,

for 1 = 1 to N/B do

for J I to V!/F do

for K = I to N/B do

for i= I to B do

for j = I to B do

for k = 1 to B do

Z[I * B + i.i J * - = 1 H + , -I * . +

X [I* F + K. •F + k A * H -, k 1 1

Given a particular I. J, and K iteration, the inner three loops in the above ,example access 11 X 14

submatrices of X, Y, and Z. The block size F? can be chosen so that these subhnatrn(c,.s ar, stmall

enough to remain in the cache. As a result, the inner three loops cache tmiss on 3i'B" data iterns. but

they reference these items 3B3 times, thus reusing every data item F tirnws

A large variety of linear algebra computations can be blocked The BLAS3 library 411-1ý f,,r

example. provides a number of important dense matrix kernels in blocked forms, and the LA PA('h

linear algebra library [21 implements several important dense linear algebra computations. iinkclding

dense linear system solvers and dense eigenvalue solvers, on top of these blocked BLAS3 krnel,

Progress has also been made on compiler-automated blocking [12. 471

Blocking techniques are even more relevant for parallel machines with hierarchical memirv,,rga-

nizations. since these machine present several additional challenges for achie.virig high perfurmnanc,'

The individual processors must still achieve significant data reuse to avoid the latencies u.ssociat--d

with accessing main memory. Furthermore, io cases where several processors share a portion of main

memory, data reuse is crucial for avoiding saturation of this memory. Processors must also rninmmi,-

traffic on the interprocessor interconnect, both because such traffic will suffer froni large latenrit'

and also because the interconnect network may saturate. Progress has been made -,n perffrming

dense matrix computations efficiently on parallel machines with memory hierarchies [3. 19 '1]> again

through the use of blocking techniques.

In contrast to most earlier work which has focused on blocking techniques for dense, matrix

computations, this thesis considers the use of blocking techniques for sparse ('holesky factorizan "n

on sequential and parallel machines with hierarchical memory organizations, Our goal is to -vahuat.,

the memory system behavior of existing approaches and to propose and evaluate now appr,,a,, ,'

that address the performance bottlenecks that are observed.

CHAPTER I. INTRODUCTION

1.3 Organization of Thesis and Summary of Results

(Chapter 2 begins by discussing sparse ('holesky factorizatvu ion ,'. si rurture 4f the ,,, pt .o
described, and se, eral important sparse factorization eon'epts are d!sru5ssted

Chapter 3 then considers specific methods for sequential sparse ('holesky factorizatil, It 1,-

scribes the data structures and computational kernels used for this computation It also des(rO, r ,,

three primary algorithmic approaches that are used to perform the factorization the- 1eft 11,41114

right-looking, and multifrontal approaches

Chapter 3 continues by exploring the performance of these sparse factorizati,.on appria(b,- ,;I
hierarchical memory machines. Not surprisingly, we find that traditional approaches t,' the tactr

ization, called nodal methods, achieve extremely low performance on such machines due t, Ihr
poor utilization of the memory hierarchy. We then consider methods that take advantage of th, x.-
istenc, of supernodes (sets of columns with identical non-zero structuret to alleviate this b,)ttl-neck

We look at supernodal variants of the left-looking, right-looking, and rmultifrontal approaches and
find that these methods achieve significantly higher performance than their nodal counterparts. due

primarily to significantly better reuse of data in the memory hierarchy. Overall. we find that by r,-
structuring the sequential sparse ('holesky computation to make better use of a cache, perforrmanc,

can be increased by a factor of roughly three over nodal methods on today's hierarchical mem-
ory machines. We also find that after restructuring the computation in this way. the performance

differences between the left-looking, right-looking, and multifrontal variants effectively disappear

Having established the importance of data reuse on a single processor, the thesis then turns t)
the issue of data reuse on a parallel machine. Before investigating specific parallel factorization

methods, Chapter 4 first describes our parallel evaluation environment We describe the Stanford
DASH machine, a 64 processor machine that will provide some of our performance numbers. WVe also
descrile a parallel performance simulation model that we use to better understand the performanco

of parallel methods and to obtain further performance numbers.

Chapter 5 then proposes an algorithm that achieves significant data reuse for parallel sparse

Cholesky factorization. The algorithm, a panel multifrontal method. is a natural extension of an
existing column-oriented parallel version of the multifrontal method. The extension involves th,

use of contiguous sets of columns, called panels, to increase data reuse within the processors Th,b
performance of this method is studied in detail. We find that this panel method improve performanc,
by a factor of two to three over column methods. However, we also find that both have several serious

limitations for large parallel machines. The most important is that these methods do not ex;)s,'

enough concurrency in the sparse problem to allow a large number of processors to be used effectively

The limitations we run into in Chapter 5 for sparse matrices are identical to those that have been

experienced by others [44] for dense matrices These same problems have been overcome for lteM'

matrices using a two-dimensional or block decomposition of the sparse matrix (as opposed to 0w

one-dimensional decomposition used for the panel approach) We therefore turn our attentwon to t he

CHA PTER I INTRODUC . TION7

question of whether a block decomposition woul1d prtivide sigrutifcant benefits fur sjOarst, prohb~in!,

(Chapter 6 considers general issues related to the use a block decu~nipositiu)n fur (huh-ky factorizatif

We restrict our study in Chapter 6 to dense miat rices in order to) focus on the mnore- ge-nvrai ou'

that are relevant for any block rinethod,

Chapter 7 then considers the use uf a block dtcomtposatin for sparse matrices The iiairha'

lenges for a block approach are in decomposing a sparse matrix into blocks that (-an lhe mranipo hi '1

efficiently and structuring a parallel comnputatio~n in te~rrs of such Mlocks OJbvious appro vlis !,a

to high o-.verheads and substantial complexity We pro..pose a block dlecomposit ion stratpgy thatiý

both simple and efficient. Our approach is found to provide good perforniance (on a wide rarog,

parallel machine sizes. W~e compare this block method with the panel method 4f the preývoi,ýj rhalj

ter The block method is shown to provide numerous advantages, including demonstratahbk high-r

performance on small parallel machines and asymptotically better performance on large nachines

Finally. C'hapter 8 presents conclusions.

Chapter 2

Sparse Cholesky Factorization

This chapter gives a brief description of the sparse Cholesky factorization computation The goial

of sparse Cholesky factorization is to factor a sparse. symmetric, positive definite matrix A into the

form A = LLT, where L is lower triangular. The computation is typically performed as a serief- of

three steps. The first step. heuristic reordering, reorders the rows and columns of A to reduce fill in

the factor matrix L. A fill entry is one that is zero in the original sparse matrix but, becomes noýn-zeTo

during the factorization process. The second step, symbolic factorization. performs the factorization

symbolically to determine the non-zero structure of L after the fill has occurred, Storage is alloat,,

for L in this step. The third step is the numerical factorization, where the actual non-zero value.-

in L are computed. This step is by far the most time-consuming, and it is the focus of this thesis

We refer the reader to [23] for more information on all of these steps.

To make our discussion in this chapter more concrete. we will use a simple example matrix

The example matrix and its factor are shown in Figure 3 (Dots represent non-zeroes: the diagonal

elements are non-zero as well.)

1 0 0 € 1
•.2 . •.2

3 . 3
* 0 4 o 0 0 0 4

A a o 6 L . . . 6
1 0 7

0 9 a • 9
0 0 0 e 0 0 0 9 C

F II s a m A a i L

Figure 3: Non-zero structure of a matrix A and its factor L

CHAPTER 2. SPARSE CHOLESKY FACTO(RIZATION

The following pseudo-code performs numerical factorization

I. for k = I to n do

2. for i = k to r, do

-3. Lk- L, k /-/_Lkj

4. for j= k+1 to n do

5. for i=j to n do

6. L1,- L,) - L,kLjk

The computation is typically expressed in terms of columns of the sparse matrix WiIIIt :i

column-oriented framework, steps 2 and 3 are typically thought of as a single operati.l, Call,.i

a column division or cdiv() operation. Similarly. steps 5 and 6 form a column modificatin, 'r

crnod(j, k), operation. The computation then looks like:

1. for k = I to n do

2. cdiv(k)

3. for j=k+ I to n do

4. cmod(j, k)

Only the non-zero entries in the sparse matrix are stored. The standard storage scheme stores
the matrix by columns, with each non-zero entry in a column having both a value and a row umb•er

associated with it. The factorization computation only performs operations on non-zeroes Tlhix
means that step 4 is only necessary when L,k is non-zero. In our example matrix, column I would
therefore modify columns 2, 4, 6. and 10. It also means that only a subset of the non-zeroes in th'

destination column j are affected by a cmod(j. k) operation.

The above formulation of the sparse Cholesky computation is typically referred to as a rzqht-
looking (or submatrix-Cholesky) approach. since column k is used to modify several columns tr' it,

right in the matrix. A left-looking (or column-ch oleksy) formulation is obtained by rearranging rh.-

loops above, giving:

1. for j= I to n do

2. for k= I to j-I do

3. cmod(j, k)

4. cdiv(j)

In this case, column j is modified by several columns to its left. Note that thl convention in hi, l
cases is that k iterates over source columns and j iterates over destination columns Note also that

CHA PT!R 2. SPA RSE ('i!OL ESK Y f4 ('TORIZA TION I I;

the crnod() operation is performed severa t ies per rolunin while theit cdird k) operatio > h,-rfrrm,-d 1

only once. The crmod() operation therefore dominates the runt Imi,

In a crnod(j. k) operation on a sparse problem the coh unis j and k nrall• hw dafrIn,

non-zero structures: the strucoire of the destination j is a superset of the- structure f 4 urco k 1I,

add a multiple of column k Into column j. the problem of matching up the appropriate er•tri,-s II

the columns must be solved. The left-looking and right-looking approaches t,) the fartorlzatln,n 1-,'o

to three different approaches to the non-zero matching problem

2.1 Matching Non-Zeroes

In the left-looking approach. the same destination column j is used for a number of ronsecrut i-

crnod() operations. The non-zero matching problem is resolved by scattering the destination column

into a full vector. In other words, a non-zero in row i of column j would be held in absolute position

i in the full vector. Columns are added into the full destination vector using an indirection. where

the destinations are determined by the non-zero structure of the source column The full vector is

gathered back into the sparse representation after all column modifications have been performed

This approach is used in the SPARSPAK sparse linear algebra package [25]. Further details will be

provided in the next chapter.

A simple right-looking implementation solves the non-zero matching problem by searching thrc, ugh

the destination to find the appropriate locations into which the source non-zeroes should be added

If the non-zeroes in a column are kept sorted by row number, which they typically are. then the

search is not extremely expensive, although it is much more expensive than the simple indirOction

used in the left-looking approach, This approach was used in the fan-out parallel factorization codke

[22].

Another approach to right-looking factorization, called the multtifrontal method [17]. perfoýrms

right-looking non-zero matching much more efficiently. The multifrontal method is more complicated

than the methods that have been described so far, so we describe it using a simple example

2.2 Elimination Tree

Before describing the multifrontal method, we first describe the elimination tree [42] of the spars,,

matrix, a structure that will be crucial for understanding the muhtifrontal method and several other

methods considered in this thesis, In the elimination tree, each noe represents a column of the,

matrix. The edges are defined as:

parent(j) t .in{ ilL, : 0.i > j}

In other words, the parent of column j is determined by the first. sub-diagonal non-zero in -'dmn n

Equivalently. the parent of column j is the first l umrin modified by colunin j Figure, I shn, -

CHAPTER 2. SP.ARSE CIOLESKY 1'ACTORIZATION 11

'101

6. (9)
5
4 (75

(2 3

Figure 4: Elimination tree of A.

elimination tree of the example matrix from Figure 3. The elimination tree provides a groat deal 4

information about the structure of the sparse Cholesky computation. For example. it can be shown

that a column can only modify its ancestors in the elimination tree. Equivalently, a column can only

be modified by its descendents.

2.3 The Multifrontal Method

Returning to our description of the multifrontal method, we note that the most important data item

in this method is an update from an entire subtree in the elimination tree to some destination colunm

In a sequential multifrontal method, all updates from a single subtree to subsequent colunmns are,

kept together in a dense lower-triangular st:ucture. called a frontal update matrix. As an example.

the subtree rooted at column 2 in the matrix of Figure 3 would produce an update matrix that looks

like the matrix in Figure 5. Note that the affected destination columns are a subset of the ance 'tr

columns of that subtree. Note also that the columns of the update matrix have the same, non-zer,)

structure as the column at the root of the subtree that produces them. In the example. column 2

produces updates to rows 4, 6. and 10 in the destination columns.

To compute the frontal update matrix from a subtree rooted at some column k. the updali

matrices of the children of k in the elimination tree are recursively computed. These update mati riC,

are then combined, in a step called assembly, into a new update matrix that has the same structure

as column k. For example, the update matrix for column 4 is computed by assembling the updat,

matrices from columns 2 and 3. The assembly of the update from column 2 into the upiatt, fr-im

column 4 is depicted in Figure 6. The update matrix from column :1 would be handled in a sirinlar

manner. The actual assembly operation typically makes use of relative oi dires [7. 4211 fir the child

relative to the parent These relative indices determine the locations whert updates from th,.chlde

update matrix are added in the destination. The relative indices in this example would he I 1. 3,

CHAPTER 2 SPA.RSE ()"HOLFISKY F..A(FO(RlZ.TI()N'

Figure 5; Update matrix for column 2

Updat to

Figu re' 6 Assembly of update, matri x from in ' Aumn 2 inu toip datev niaTr, x f'iti

i-lAP fUR 2SARi1 4VK' 1rt'i t

! dvat'm ng t hat the lir~t rw ,A, it hI" h* h It rre'Jl 'It. t' ~r'! r*ý v. ! Triýe 4'St t tinS 1. ti '> I

row :orre-spoyids to Ilhe third iand hei tliird It W rre'li-tok I- tOw f ;rth N.4 Tii tha W

,*,)r rtespi ýn deI co lh. 1, .. w ' "~ter I e I ~ rxe r)ir. t-e re It u. itoe itv iI ree iiio I it i

stinple fnita ter t, cariter r ht. Auld uj?-dateý c'iii mt th l' i ii

O~nce the child update Tlim mrires ha'. fe t-ie :tidde it" tri III, du ItOr,,tttiltiiitrix tO it,- ex:

Is iiý computi the tinal % Alue', fr th t nt,-rie, fI e tmirr-1mt dkhinin In te.xii h, nX11de ý ' Le T tlij

op~iat -; frý tin(the .-hljdren atf.-t e<iunan11 -4 a. well :--, c'Itmini .fat l umnorii I Alfte,-r I IIt; ; , ,T

r I it rix ha's been assc:11 led I he- rigi nial non)it-ierw, fri int -)Iuit iu 4 ar,, t:ded, ntý hI It- ipat - I :,tt r i\

A~ - ir ýperatii~n is then p, rfvrin -.l ,it Itititi .1 1, '!ripmitu.- 'i.1 final timi. tit t hIt I iii Ih,

11ý'\t ýtep ts to, Ouipute the opdates prod uced dir,-ctl fruitn c Ititin I III,, retI 4A t it, tiii rt

Fhese uipdates are added Into the, update mnatrix InI the last step. thIe final ~asfor ,lhinin I 1,

pidfrotni the updiate matrix back int, the -ot rage fýr ro turlin -1

Ant Important issut- in the ridltifrontal tiiet hiý Iis how hII, lpate i'mat rices -, to~red If :-

columr~ns of the elimination tree tre u isited usingz a post-o)rder tra%,ersal . >,dat,, tmatrtce-

can he kept on a stack, known as the update matr~i stark N't, ~a VionItn 1 'm the upditf

ma13trice~s fromn its ctlrnare au-ai able at the top of th Itart ik F'he ;ur reA - - I r I iiý\I i t t 11, k

assembled, and a new uipdan matrix is placed at the it-," p, f -1 7t "it, ,iat, matrix stacik

t,, piraliv increases data storage requirements k~ a stgmtfic aut a~vnto~t r atlgitsg fr'm Ix

F-i117. depend ing on the matrix F or more Information ont the ninuIt ifront al mtnohod. see17

2.4 Supernodes

An Important concept in sparse ('holeskyý factorization is that of a .uupem-no'ft A ztjpprriodf is, ;t ,tf

roit iguous columns in the factor whose non-zero, structure consists of a dense trianigular flo)ck (-n Tthe

diagonal, and an identical set of non-zeroes for earh column below the diagonal A superwnideý muss

also) form a simple path in the elimination tree. meaning that each column tin the- siipernode must

have only one child in the Plirriination tree As an example. consider the, matrix of Figure 3 * %4riuns

1 through 2 form a supernode- in the factor. as do columns 4 through 6, columns 7 throigh 9). andi

-olumins 10 through I I Superrnodes arise in any sparse factor and they are tv pically quite bar ý''

Probably the most important property of a supernode is that each rmmernher cohiumn rnf difi-, hý

same set of destination columnns Trhus. the (holesky fact orization coimputat ion can le, ýxpr-s-d

in terms of supernodes modifying column~s, rather than colum11ns modifying columins A le ft -i.ktirli

surerriodal approach would 1ltk like

1. for I I to ni do

2. cdiv(j)

3, for each s that modifies j doa

4. smodoj. ,)

CHAPTER 2. SP.ARSE CHOLESKY £ACTORIZATION 1-4

where smod(j, s) is the modification of a column j by supernode s The mo_-dification of a

column by a supernode can be thought of as a two-step process. in the first step. the iniliicatls i.

or update. from the supernode is computed. This update is the sum of multiples of each colunlL

in the supernode. Since all columni in the supernode have the sam<. structure, this couiputatin

can be performed without regard for the actual non-zero structure of the supernode. The updat,,

can be computed by adding the multiples of the supernode columns together as dense vectors In

the second step, the update vector is added into the destination, taking the non-zero structure itot

account. Supernodes have been exploited in a variety of contexts [I '- 17. 38,].

The supernodal structure of the matrix is crucial to the multifrontal method, since it greatly

reduces the number of assembly operations required. Since columns in a supernode share the same,

non-zero structure, they can share the same frontal update matrix. The update matrix therefore,

contains the updates from a supernode and its descendents in the elimination tree, rather than

simply the updates from a single column and its descendents.

Supernodes will be exploited for a variety of purposes in this thesis.

2.5 Generalized Factorization

The three high-level approaches to sparse Cholesky factorization, the left-looking. right-looking.

and multifrontal methods, have so far been expressed in terms of column-column or supernode-

column modificitions. This thesis will actually consider a wider range of primitives for expressing

the computation. It is therefore useful to think of the factorization computation in more general

terms, A generalized left-looking Cholesky factorization computation would look like-

1. for j= I to NS do

2. for each k that modifies j do

3. CozputeUpdateToJFromK(j, k)

4. PropagateUpdateToiFrouK(j, k)

5. Complete(j)

In the above pseudo-code, the Completeo) primitive computes the final values of the elements

within a structure (a column, for example), once all modifications from structures to its left have been

performed. The ComputeUpdate() primitive computes the update from one structure to the other

The Propagatptrpdate() primitive subsequently adds the computed update into the appropriat,,

destination locations. In the case of the crmod() primitive, the computation and propagation if
the update are performed as a single step. The NV,5 term in the above pseudo-code represents th,

CHAPTER 2. SPARSE CHOLESKY E4CTORIZATION 1I

number of different destination structures in the matrix. An important thing to nflte is that j and

k do not necessa.rily iterate over the same types of structures.

The right-looking and multifrontal methods generalize in a similar manner. A generalized right-

looking approach would use the same primitives in a different order. A generalized multifrontal

approach would be similar, but it would compute the update directly into the appropriate subtree

update matrix and it would perform update propagation during the assembly step instead of in a

PropagateUpdate() primitive.

This thesis will consider a range of possible choices for the structures j and k. Clearly, to 1)e,

interesting choices, the chosen structures must lead to efficiently implementable primitives. For se-

quential factorization, we limit ourselves to three choices: columns, supernodes, and entire matrices

For parallel factorization. we will also consider panels, which are subsets of supernodes. We will

give more details about how the actual factorization computation is performed in terms of these

structures in later chapters.

Chapter 3

Sequential Sparse Cholesky

Factorization

3.1 Introduction

This chapter will consider sparse Cholesky factorization on sequential hierarchical-memory machines.

We present a comprehensive analysis of the performance of a variety of factorization methods Our

goal is to understand the impact of several important implementation decisions on the performance

The first and probably most visible implementation decision is the structure of the overall computa-

tion. We consider three common approaches: left-looking, right-looking, and multifrontal. A socond.

independent implementation decision is the choice of primitives on which to base the computation

The most commonly used primitives are column-column primitives, where columns of the matrix

are used to modify other columns. We demonstrate that these primitives yield low performanc,.

on hierarchical-memory machines, primarily because they exploit very little data reuse. With such

primitives, data items are fetched mainly from the more expensive levels of the memory hierarchy

We neyt consider factorization methods based on supernode-column primitives, where a column

is modified by an entire supernode at once. An important property of the supernode-column modifi-

cation operation is that it can be unrolled [15]. The unrolling allows daua itcms from the destmnat ion

to be kept in processor registers across multiple modifications, thus increasing data reuse. As a

result, for moderately large sparse problems, memory references are reduced by more than 50% and

performance is improved by between 50% and 100%. We also consider column-supernode printiiv,-..
where a single column is used to modify several columns in a supernode. While the reuse bhenf~t;

of such primitives are qualitatively similar to those of supernode-column primitives, the achitved

benefits are much smaller.

We then consider primitives that modify several destination columns by sevekal soure C4('htnin-

16

CHAPTER 3. SEQUENTIAL SPARSE CHOLESKY FAC(TORIZATION 17

at once. We first look at a simple case. consisting of supernode-pair primitives, where pairs if

columns are modified by supernodes. Such methods further increase the amount of exploitable

reuse. Memory references are reduced by another 35% from the supernode-column rneth,,dý. and

performance is improved by between 30% and 45%. We then consider the use of supernode-supernodt

primitives, where supernodes modify entire supernodes. Such primitives allow the computation t,,

be blocked to increase reuse in the processor cache. Factorization codes based on these primitiv,1'

further improve performance; we observe a 10% to 30% improvement over supernode-pair codes

Finally, we look at supernode-matriz primitives, where a supernode is used to modify the ,ntire

matrix. The multifrontal method is typically expressed in such terms. Supernode-matrix primitiv,,s

make even more data reuse available. We find, however, that the impact of this increase is sina'l

supernode-matrix methods yield roughly the same performance as supernode-supernode methods

The reason is simply that supernode-supernode methods exploit almost all -f the available reuse.

This chapter then continues by considering issues that are important for realistic cache designs.

including the effects of cache size, cache line size, cache set associativity, and cache interference.

This chapter makes the following contributions to the understanding of the sparse Cholesky

computation. First, it compares a number of different methods using a consistent framework. For

each method, we factor the same set of benchmark matrices on the same set of machines, thus

allowing for a more detailed analysis of the performance differences between the methods. This

chapter also provides a detailed study of the cache behavior of the different methods. We study

the impact of a number of cache parameters on the miss rates of each of the factorization methods

'in•.1ly, this chapter analyzes supernode-supernode methods. a class of methods that have so far

received little attention [11]. We believe that we are the first to publish detailed performance,

evaluations of practical implementations of supernode-supernode methods.

The chapter is organized as follows. Section 3.2 begins by describing our experimental envi-

ronment. Section 3.3 then consider several implementations of the high-level approaches based on

different primitives. We look at the memory system performance of each of these variations, as well

as the achieved performance on two hierarchical-memory machines. In section 3.4. we consider thw

consequences of changing a number of cache parameters, including the size of the cache, the size of

the cache line, and the degree of set-associativity of the cache. Section 3.5 then discusses different

approaches to blocking the sparse factorization computation. and considers how each approach inter-

acts with the memory hierarchy. Finally. we discuss the results in section 3.6 and present conclusions
in section 3.8.

3.2 Experimental Environment

This chapter will provide performance figures for the factorizati-n of a range of benchmark mat rice>

on two hierarchical-memory machines. We now describe the benchmark riatrices and the rtahine,

CHAPTER 3. SEQUENTIAL SPARSE CHOLESKY "(CTORIZATIQN O

"Fable I Benchmark matrices

Name Description ; Equatiotns N-r N,-zteru

1I LSHP3466 Finite element discretization of L-shaped region $3.466 204 .1-
2. 3 BCSSTKI4 Roof of Omni Coliseum, Atlanta t 1.)6 ______

34 GRIDI00 5-point discretization of rectangular region + 1,0 : o ti)1)

4. ' DENSE750 Dense svmmetric matrix 150 i ýef;l 75'0
5. BCSSTK23 Globally Triangular Building 3. 134 421 014
6. BCSSTKi5 Module of an Offshore Platform I 1,_4_ __________

BCSSTKI8 Nuclear Power Station i 11,946 .1:7
&. BCSSTK16 Corps of Engineers Dam 4.04 TO

Table 2: Benchmark matrix statistics.

Floating-point Non-zeroes
Name operations in factor

1. LSH1P3466 4,029,836 83,116 1
2. BCSSTK14 9,795,237 110,461
3. GRID100 15,707,205 250.835
4. DENSE750 140,906,375 280,875
5. BCSSTK23 119,158,381 417.177
6 BCSSTK15 165,039.042 647,274
7. BCSSTKIS 140,919.771 650,777
8. BCSSTKI6 149.105,832 736,294

To evaluate performance, we have chosen a set of eight sparse matrices as benchmarks. TI'hwse

matrices are described in Tables 1 and 2. With the exception of matrices DENSE750 and (;RID100,

all of these matrices come from the Harwell-Boeing Sparse Matrix Collection [16]. Most are medium-

sized structural analysis matrices, generated by the GT-STRUDL structural engineering program

Note that these matrices represent a wide range of matrix sparsities. ranging from the highly sparse,

LSHP3466, all the way to the completely dense DENSE750. In order to reduce fill in the factor. the

rows/columns in all benchmark matrices are reordered using the multiple-minimum-degree lieuiristic

[30] before the factorization.

Performance results for the factorization of these matrices will be presented in two way it)

this chapter. We will typically present numbers for each matrix and summary numbers The

summary numbers will take three forms. One will be mean performance (harmonic mean) over all

the benchmark matrices. In order to give some idea of how the methods perform on small and largo

problems, we will also present means over subsets of the benchmark matrices. In particular. we call

matrices LSHP3466. BCSSTKI4. and GRIDI00 small matrices, and similarly we call C('SST KIT

BCSSTK 16. and BCSSTK18 large matrices. We do not mean to imply that the latter three, matrices

are large in an absolute sense. In fact, they are of quite moderate size by current standards %Ne

simply mean that they almost fill the main mermories of the benchmark machines, and thus are, tI ,

CHAPTER 3. SEQUENTIAL SPARSE CHOLESKY FACTORIZATIONh)

largest matrices in our benchmark set

The two machines on which we perform the sparse factorization rompitations art. the 1)11 ',ta-

tion 3100 and the IBM RS/6000 Mode!320. Both are RISC machines with memoryl,.rarchis lIh,.

DECstation 3100 uses a MIPS i:B2000 processor and an R2010 floating-point coprocessor. ,a:rh ,.pr.

ating at 16MHz It contains a 64-KByte data cache, a 64-KByte instruction -ache, and P6; MB. t,-•

of main memory. The machine is nominally rated at 1 6 double-precision LINPA(K MFLOI'S ,' he

IBM RS/6000 Model 320 uses the IBM RS/6000 processor, operating at 20 MNz Fhe M%1,dtel 320

contains 32 KBvtes of data cache, 32 KBytes of instruction cache, and 16 MBytes of imiain nerirý

The Model 320 is nominally rated at 7.4 double-precision LINPACK MFLOPS '

The data cache on the DECstation 3100 is direct-mapped. meaning that each location in imeri,,r

maps to a specific line in the cache A fetched location displaces the data that previously residid

in the appropriate line. Two memory data items that map to the same line and frequently displace

each other are said to interfere in the cache. The cache lines in the DECstation 3100 are 4 bytes

long.

The data cache on the IBM RS/6000 Model 320 is 4-way set-associative, meaning that each

location in memory maps to any of 4 different lines in the cache. Replacement in the cache is done

on an LRU. or least-recently-used basis, meaning that a fetched location displaces the least recent 1i

used of the data items that reside in its four possible lines. Each cache line contains 64 bytes.

The relative costs of various operations on these machines are quite important for understanding

their performance. On the DECstation 3100, a double-precision multiply requires 5 cycles, and a

double-precision add requires 2 cycles. Adds and multiplies can be overlapped in a limited manner

A single add can be performed while a multiply is going on, but an add cannot be overlapped with

another add, and similarly a multiply cannot be overlapped with another multiply The peak floating-

point performance of the machine is therefore one multiply-add combination every 5 cycles. A cache

miss requires roughly 6 cycles to service. A double-precision number spans two cache lines, thus

requiring double the cache miss time to fetch. On the IBM RS/6000 Model 320, adds and multiplies

each require two cycles to complete. However, the floating-point unit is fully pipelined. meaning

that adds and multiplies can be overlapped in any possible way A floating-point instruction can be

initiated every cycle. Furthermore, the machine contains a multiply-add instruction that performs

both instructions simultaneously. The RS/6000 can issue up to four different instructions in a single

cycle. The peak floating-point performance of the IBM RS/6000 is one multiply-add per cycle. A

cache miss on the Model 320 requires roughly 15 cycles to service, bringing in a 64-byte cache line

From these performance numbers, it is clear that memory system costs are an extreniely im-

portant component of the runtime of a matrix computation The cost of performing floating-point

arithmetic is dwarfed by the cost of moving data between the various levels of the memory hierarchy

'Since we performed this study, newer models of the above mac'hines have been released (the DEC'stat, .imo / .ý i()
with a 40 MHz P3000 processor and the IBM RS/6000 model 980, with a 70 Mltz RS/fiOOO processor) ,,e expeI
the results presented here to be sinjlair for the newer machines

CHA PTER 3. SEQUENTIAL SPA RSE (1HOL ESK Y FA (CTORIZA TIO."

As a simple example, the RS/60t0) requires ninre instructions to load thre,- operands fro•, ýh :.t h,

to processor registers than it does• to perform a double-precision rultiply-add operaton)n th-t

The cost of loading thern from main mniemory is mnuch higher For this rason. the perforrniane ,!';t

linear algebra g•ram in general depends more on the memory system demands of the program t h:it

on the number of floating-point operations perfornmed Our analysis ,if factorization perfirrii•,f''

will concentrate on the memory system behavior if the various approaches

To provide concrete numhers for comparing the memory systeri behaviors of the vari.,us ft,-

torization methods, we will present counts of the number of memory references and the tmnhibr 4f

cache misses a method generates in factoring a matrix These numbers are gathered using the 'I ang,

simulation environment '13] Tango is used to instrument the factorization programs ti, produ,, ;t

trace of all data references the programs generate. We count these references to produce ni•,nirý

reference counts and feed them into a cache simulator to produce cache miss counts

Another factor that will be important in understanding the performance of the IBM RS/6iM0 i,

the amount of instruction parallelism available in the various factorization approaches This machine

has the ability to issue up to four instructions at once. but such a capability will naturally go unused

if the program is unable to perform many useful instructions at the same time. 'nfortunately, the

impact of this factor on performance is difficult to quantify. We will give intuitive explanations fo,:r

why one approach would be expected to allow more instruction parallelism than another

3.3 Sparse Cholesky Methods

We now consider a number of different primitives for expressing the sparse Cholesky computat Ion

For each set of primitives, we consider left-looking, right-looking, and multifrontal implementations

Our goals are to examine the benefits derived from moving from one set of primitives to another t.o

examine the differences between the three high-level approaches when implemented in terms of the

same primitives, and to explore the different behaviors of the methods on the two different machines.

Our goal is not to explain every performance number, but instead to discuss the general issueOs that

are responsible for the observed differences. To keep the differences as small as possible. the ihre.

approaches use identical implementations of the primitives whenever possible

3.3.1 Assorted Details

To make the performance numbers that will be presented in this section more easily interpretable.

we now provide additional details of our specific implementations. In particular. wt. prov ide lt a•ls

on our multifrontal implementation.

The implementation of the mnitifrontal method has a number of possible v'ariat ions O•(T, var-

ation involves the particular post-order traversal that is used to order the columns We ch,i,,se tl

traversal order that minimizes necessary update stack space, using the techniques of [321J We 1,, I.t

CHA PTER 3. SEQUENTIA L SPA RSE CH(OL ESK Y FAC CTORIZATION

include the time spent determining this order in the computation t irnes presented i the ;hapir

Another possible source of variation in the multifrontal method is in the approach use,i i, ha•l,,

the update matrix stack. We use an approach that differs slightly from the traditinýal,,nw, in" ,r i,-r

to remove an obvious source of inefficiency for hierarchical-memory machines In ,rder t, %iJ%

new update matrix to the top of the stack, the multifrontal method must first consume ;a nurnt,,r

of update matrices already there A traditional implementation would cornputt, the ri,*w uptt,

matrix at one location, remove the consumed update matrices from the top of the stack, arnd thn

copy the completed update matrix to the new top of the stack. Such copying is ver% expensi., ii

"a hierarchical-memory machine, so we introduce a simple trick to remove it Rather than keepin4

"a single update matrix stack, we keep two stacks that grow towards each other Update mnatrI,0e

are consumed from the top of one stack, and produced onto the top of the other stack. Another

way of thinking about this trick is in terms of the depth of a supernode in the elimination tree

The update matrices from supernodes of odd depth are kept on one stack, with the update matrices

from supernodes of even depth on the other. This trick eliminates the necessity of copying update

matrices. This approach is not without costs, however. We observed a 20-50% increase in the

amount of stack space required. This modification introduces a tradeoff between the performnancp

of the computation and the amount of space required to perform it. We investigate the higher

performance approach.

We note that another way to obtain the benefits of this trick would be to use heap-allocated

dynamic memory. That is, a multifrontal method could obtain new update matrices using rnalleto)

calls (using C syntax), and it could return them to heap when finished with them using free() calls

One potential problem with such an approach is fragmentation The multifrontal method require,

many small update matrices near the leafs of the elimination tree and thus near the beginning ,;f

the computation. To make efficient use of storage, the resulting small memory blocks would have t'.

be combined into larger blocks for the later stages of the computatio- when fewer, larger updates

are required. While many heap memory managers perform this free block combining, many others

do not. We therefore do not use dynamic memory allocation ia our implementations.

3.3.2 Column-column Methods

We first consider factorization approaches based on cdiv() and cemod() primitives. Since these prinii-

tives work with individual columns, we refer to the corresponding methods as column-column mueth-

ods, We begin by presenting performance numbers for left-looking, right-looking, and miultifrontal

column-column methods (Table 3). We use double-precision arithmetic in these and all other iriiple-

mentations in this chapter. Note that in this and all other multifrontal implementations, one frontal

update matrix is computed per supernode.

One interesting fact to note from this table is that the three methods achieve quite similar

performance on the DECstation 3100 Thp fastest of the three methods, the multifrontal rriethh,

CHAPTER 3. SEQUENFIAL SPA RSE CHOL ESK Y F4 ('TOHIZA TION

Table 3: Performance of column-column methods on DE(\tation 31100 and IBM RS/60(ooi .\l,-ti
320.

_Left-looking if Right-lookingT Multifrontal

MFLOPS MFLOPS MFLOPS

Problem DEC'1 IBM DEC. IBM , DEC I IBM

LSHP3466 131 4.29 1.34 2.61 1.47 16.06
BCSSTK14 1,29 5.19 1,26 2.78 1 .53 7.03
GRID100 1.31 4.56 1.22 2.67 1.44 5.93
DENSE750 0.941 5.98 1,17 8.53 1.17 8.72
BCSSTK23 0.96 5.70 0.97 3.21 1.11 7.90-

BCSSTK15 0.97 5.,7,1 0.94 2.82 1.14 8.04
BCSSTK18 0.96 5.52 0,92 2.64 1.09 7.55
BCSSTKI6 1.03 5.59 0.96 2.94 115 7.95

Means: IT I _ _ _

Small 1.30 465 1.27 2.68 1.48 6.30
Large [0.99 5.61 0.94 2.79 1.13 7.841
Overall 1 1.07 5.25 1.08 3.05 1.24 7.27

is roughly 16% faster than the slowest- In contrast, the multifrontal method is two to three times as

fast as the right-looking method on the RS/6000. We now investigate the reasons for the obiamed

performance.

As was discussed earlier, one important determinant of performance is memory system behavior

We therefore begin by presenting memory system data for the three factorization methods in Table 4

The data in this table assumes a memory system similar to that of the DECstation 3100. where

the cache is 64 KBytes and each cache line is 4 bytes long. While the cache on the RS/6001J haLs

a different design and would result in different cache miss numbers, the numbers in this table wiii

still give information about the relative cache performance of the different factorization methods.

This table presents two figures for each matrix, memory references per floating-point operation and

cache misses per floating-point operation. The units on all of these numbers are 4-byte words. We

now discuss the reasons for the observed memory system numbers.

The refs-per-op numbers for the three methods can easily be understood by considering their

computational kernels. Recall that the dominant operation in each method is the crnod(,,perati n.

in which a multiple of one column is added into another, y - ax + y. In the left-looking nieth.d. this

conceptual operation is accomplished by scattering a multiple of the vector x Into a full destinal i-,n
vector, using the indices of entries of x to determine the appropriate locations in the full vectr T,,

add the entries. The inner loop therefore looks like:

1. for i = I to n do

2. yfinde ,[ill = y]index[lj + a1 * ,[,j

CHAPTER 3. SEQUENTIAL SP.ARSE CHOLESKY FA(CTORIZATION 2?,

Table 4: References and cache misses for colurmn-column methods, 6,K cache with 4-h'te ca'-ho,

lines.

Proble..Left-looking Right-looking Multifrontal
Problemn Refs/op Misses/op Reefs/op fs/op Misses/op
LSHP3466 4.22 0.30 4.32 0.19 3.82 0 17
BCSSTK14 3.88 1 0.39 3,99 0 43 :1.53 0 '.32
GRIID100 4.05 0.37 4.23 0.38 3. 81 0 24
DENSE750 3.57 1.00 3.04 1-04 3 03 1t05
BCSSTK23 3,62 0.95 :3.85 1.07 3.23 Imo7
BCSSTK 15 3.63 1.05 4.03 1.05 3,20 1 03
BCSSTK18 3.65 j 1.06 .. 15 1.0.5 3.33 1 06
BCSSTK16 3.66 0.82 1 4.00 1,00 3.22 1 00
Means: 1 -- _ _

Small '4.04 - -5 4.18 0.29 :.72 I 0.22
Large 3.65 0J.961 4.06 1 03 3.25 1.03Overall 3.77, 0.58 3.91 0.53 3.37 0 441

This kernel will be referred to as the scatter kernel. We assume that a resides in a processor

register and geners-es no memory traffic during the loop. Thus, for every multiply/add pair the

kernel loads one element of x, one index element from index, and one element from y, and writes

one element ctf y. Assuming that the values are two-word double-precision floating-point numbers

and the indices are single-word integers, then this kernel loads 5 words and store 2 words for everý

multiply/add pair, performing 3.5 memory operations per floating-point operation. This figure

agrees quite well with the numbers in Table 4. The numbers in the table are understandably higher

because they count all memory references performed in the entire program whereas our estimat,

on.y counts those performed in the inner loop.

The inner loop for the right-looking method is significantly more complicated than that of the

left-looking method. This method adds a multiple of a vector x with non-zero structure xindex

into a destination vector y with non-zero structure yindex. A search must be done in y for thO

appropriate locations into which elements of x should be added. The kernel looks like:

1. yi= 1
2. for zi= 1 to n do

3. while (yindez[yi] $ zindez[zij) do

4 yi = yi + 1

5. y[yi] = 0[0i] + a • z[zi]

This kr.rnel will be referred to as the search kernel. To perform a multiply/add, the search kerrnel

must load one element of x. one element of y, one element of xindex. ind at la.st ,,ne Ietol 4

yindex It must also write one element of y. The kernel would thorefore be expectd t-, prf,,rr(

(HA PTER 3. SEQI'ENTI4AL .SPARSE ('HOLESKY ".4('TfORIZATION "24

at least S memory references for everý multiply/,idd ()r -1 word references for ev,-r\ tlea ii-p

operation, The numbers tile table are often less than this figure because of a •wprial faitsi Ow

right-looking method. One can easily determine whet her the source and destination .ert rs

the same length. Since the structure of the destination is a superset of the structure of the s, trr,

the two vectors necessarily have the same structure if they have the same length The index ,,r-.

can then be ignored entirely and the vectors can be added together directly.

The multifrontal method has a much simpler kernel than either of the previous two) nwth,,,r

Recall that the inultifrontal method adds a column of the matrix into an update coltiuin. and ih,

update column has the same non-zero structure as the updating column Thus the cof(W7iitatl 11:11

kernel is a simple DAXPY:

1. for i= I to n do
2. y,[,1 = y[i] + a. * x•i

This kernel loads 4 words and writes 2 words for every iteration, for a ratio of 3 memory operations

per floating point operation. The multifrontal method must also combine, or assemble, update

matrices to form subsequent update matrices. The memory references performed during assemblyý

are responsible for the fact that the numbers in the table are larger than would be predicted by th,

kernel.

The cache miss rates for the three methods can be understood by considering the following tn

each method, some column is used repetitively. The left-looking method modifies the destinationl

column by several columns to its left, while the right-looking and multifrontal mrnthods use a sourcet

column to modify several columns to its right. Thus. in each of the three y - ax + y kernel-.

from above, one of the two vectors x or y does not change from one invocation to the next. With

a reasonably large cache, this vector would be expected to remain in the cache- implying that -1ne

vector would miss in the cache per column modification. In other words, every multiply/add pair

would be expected to cache miss on one double-precision vector element. yielding a miss rate of mne

word per floating-point operation.

The index vectors may appear to cause significant misses as well, but recall that adjacent colunin,

frequently have the same non-zero structures. These columns share the same index vector in the

sparse matrix representation. Thus, even when the miss rate on the non-zeroes is high. tht miss

rate on the index structures is typically quite low.

Looking at achieved performance in the context of this memory system data. we see that thi,

;.-rformuance of the three method on the DE(station 3100 can be easily understood in terms otf !h'ii

memory system data. A substantial portion (roughly 35X for the larger matrices) of tilh, runt in,

goes to servicing cache misses. Since the three methods generate roughly the same nummber of ,arho

messes, this cost is the same for all three. 'The perforrniance differences between the ret-,tIhs ar,

primarily to the differences in the number of mnernory referencrs.

CHAPTER 3. SEQUENTIAL SPARSE C-JOLESKY F4 CTORIZATION 2:)

Understanding the performance of these methods on the IBM RS/6000 is soinewhat mor, roi•

plicated. Again the cache miss numbers are roughly the same. but cache miss costs play a !,•s
important ro!e on this machine. We will see in later methods that cache miss costs (-an havo :a

significant effect on performance on this machine, but they are not as important as they werf- ,'n

the DECstation 3100. More important for the column-column methods is the arnourt of instruct ion

parallelism in the computational kernels, and the extent to which the compiler can exploit it We

have examined the generated code and noticed the following. Firstly, the DAXPY kernel of the
multifrontal method yields extremely efficient machine code. This is not surprising, since this kernel
appears in a wide range of scientific programs, and it is reasonable to expect machines and compier.s
to be built to handle it efficiently. The scatter kernel of the left-looking method yields quite efficient

code as well. While this kernel is not as simple or efficient as the DAXPY kernel, it is still quite,
easily compiled into efficient code. The search kernel of the right-looking method is another matTer

entirely. The kernel is quite complex, containing a loop within what would ordinarily be consid-
ered the inner loop, greatly complicating the code. This kernel meshes poorly with the available

instruction parallelism in the RS/6000, yielding a much less efficient kernel.

3.3.3 Supernode-column Methods

The previous section considered factorization approaches that made no use of the supernodal strui-
ture of the matrix. In this section, we consider the effect of incorporating supernodal mnodificat ions

into the computational kernel, where the update from an entire supernode is formed using dense ma-
trix operations, and then the aggregate update is addd into its destination. Supernodal elimination

can be easily integrated into each of the approaches of the previous section [11.

We now consider the implet&ientation of supernode-column primitives. Recall that our gen-
eralized phrasing of the factorization computation identifies three primitives: Computf Update()

PropagateUpdate(. and Completeo. For a particular set of primitives. the same ComputeUpdalt-(i

can be used for the left-looking, right-looking and multifrontal approaches. The Propagate Updatf

primitive will differ among the three,

We begin by briefly describing the implementation of the update propagation step. Recall that
this step begins once the update from a supernode to a column has been computed The update has
the same structure as the source supernode. As a result, the propagation steps for the left-looking.

right-looking, and multifrontal supernode-column approaches are quite similar to the corresponding
column-column modification operations. Note that this does not imply that the overall perfornianct,

of the supernode-column and column-column methods will be similar. The propagation priniti',•

in the supernode-column methods occur much less frequently than the modification kernels in the
column-column methods, so they have a much smaller impact. on performance

We now turn our attention to the ('oinputef'pdate() step. a step that is rojrmni arring I h,
three methods. In fact, to make the three, methods more directly comparable, we use the idtlentai

CHAPTER 3. SEQUENTIAL SPARSE CfIOLESKY FA(CTORIZATION

code for each. Recall that the update from a supernode tu a colum1n is ,oripit1d using a

rank-k update, where the K vectors used in the tipdat, ar,' the columnris of the iurcrf

below the diagonal of the destination The ba-sic kernel appears as follows

1. for k= I to K do

2. for i= I to n do
3 Y[i] = y[i] + -k

Each column xk is successively added into the destination y This kernel would be exprcte-d r

load 3 words for every floating-point opetation, since the inner loop is a DAXPY identical ;,) iht

kernel of the column-column multifrontal method. However, the number of memory references can
be significantly decreased by unrolling the loop [15] over the modifying columns, as follows:

1. for k = I to K by 2 do

2. for i= I to n do

3. y[i] = y[i] + ak . k[i] + a+, - X.k[i]

The above loop uses 2-way unrolling. Each iteration of the inner loop now loads two elemennts

of x, one element of y. and stores one element of y. The code would also perform 4 floating-pcin

operations on this data. This gives a ratio of 2 memory operations per floating-point operation III

general, a u-way unrolled loop would perform u + I double-word loads. I store, and 2', floating,

point operations per iteration, for a ratio of 1 + 2/u memory references per operation. (.)f cours.'

there is a limit to the degree of unrolling that is possible or desirable. Since the values ak imi.,

be stored in registers to avoid memory traffic in the inner loop, the degree of unrolling is liilrted

by the number of registers available in the machine. Unrolling also expands the size of the cod,'

possible causing extra misses in fetching instructions from the instruction cache. Furthermore. th,

benefits of unrolling decrease rapidly beyond a point. For example, sixteen-way unrolling generat,--

only 10% fewer memory references than eight-way unrolling. We perform eight-way unrolling in ,ur
implementation. Ideally, a ratio of 1.25 references per operation would be obtained.

In Table 5 we present performance numbers for the three supernode-columni methods Wve als,,

present summary information for these methods and the column-column methods of the prev:,I-

section in Table 6. In comparing these performance numbers we see that the supernde-roluimn

methods are significantly faster than the column-column methods, ranging from 30'/(faster for thlr
multifrontal method on the IBM RS/6000. to more than 3 times faster for the right-looking tnethid

on the IBM RS/6000. We also see that the p)erformance of the three supernode-colunin netlihds

quite similar. In particular, the overall performance on the RS/ti000 differs by less than T.74 arn, ,nii

the three methods To better explain these performance numbers, w, present menmory refere,'nc, ti,

eachp miss numbers for these three methods in Table 7 We also present mnomory ref,,rence summa.,,

I t:4

IET S R -1 177 7 17 -- ---
BeS2 7K' ''o I ~ I i9

B=.SVK I . i 1 1 t ~ I *ý' 71]

W (-SS Kr 1)t 9I - I) '0 I '2 I

Lar(,.STKII 11 4j. 1 1ý I 7o It 2U2 I~H 0
174 I 12 19 11 i 0 1

M-a p-~ t~j ,rf,,rnanr- mim pr onl IE(statit ~n 31090 an~d I BM HS/ 60ol \1 ~die :'.2f

_________ L-'fl-Iooking ;; Right-loking \lultifront~it
_________ MI'LOPS 1: MFTLOPS %IFLOPS

\tthd 1 fH(\1iV DEC IBM DE(BRM

iLarge.
'()Iirnn-om uninr)¶I jt

SupP~rnodfr-cIlro~l til F) 1 o 10 2 4 ~ 0 I IO

,)IJrt---'-dJr rl rl 3 05 1? I~ 1 24 7
-,lFif'rnl#-, I~m 1: 71 951 5i 51$' I

CHAPTER 3 SEQ('ENTIAL S""ASE(Th)LfSK V FAt ToRIZATION

Table 7 References and cache misses for supernode-column methods ti-K cache with 4-kt&,hth'-
lines.

________ Left-looking i Right-looking l M ultifrontal
Problem Refs/op 1 Misses/op i Refs/op [Misses/op __Refs/op_ N MissesIop

LSHP3466 2.61 0.25 2.35 0 09 2.68 1 7
BCSSTKI14 2.05 0.39 192 . 0 08 2.14 , It I

, GRID100 2.32 0.37:r 2.17 0.09 2.6 0 1 U 1?
DENSE750 1.30 1.05 1.2 1 04 1.30 1 I -5
BCSSTK23 1.57 0.98 -1577 0•1 163 __ ,,____

BCSSTK 15 153 0.94 . ."51 0.71 1:37 0.
BCSSTK18 1.70 0.96 1 72 0.69 1 78 . 7,
BCSSTK16 1.67 0.87 1.63 053 166 059
Means:

ISmall2.:30 0.32 2.13 0.09 2.453] 0 17

Large 1.63 _.....__ _92 __ i_62 0.63 1.67 _ 0 69
Overall 1.76 0.55 1.71 0.20 21 _1 _ .) 330

iniormation in Table 8.

Before analyzing the behavior of these methods, we make a brief observation about the multi-
frontal and left-looking supernode-column methods. When these methods are compared. one of the

most frequently stated performance advantages of the multifrontal met' 1 [17] is its reduction ill

indirect addressing, and one of the most frequently stated disadvantagrt is that it performs niire

floating-point operations. We note that these two points of comparison are actually describing the

advantages and disadvantages of supernodal versus nodal elimination. Recall that in both the left-

looking and multifrontal methods, an update is computed from an entire supernode to a colunin

The resulting update must then be added into sonme destination. In the multifrontal method. thle

update is scattered into the update matrix of the parent supernode in the assembly step. In the

left-looking supernode-column method, the update is scattered into a full destination vector In

each method, these are the only indirect operations that are performed, and this is virtually thO

only source of extra floating-point operations. Thus, the two methods are almost entirely equivalhnt

ia terms of indirect operations and extra floating-point operations.

Returning to the memory reference numbers, an important thing to note is that the numbers for

the supernode-column methods are significantly lower than those for the column-column inethois

(see Table 8). Depending or the problem and the method, the number of references has decrea.sd

to between 45% and 55% of their previous levels. This decrease is due to two factors First,

the supernode-column methods access index vectors much less frequently Second, the supern,,dai

methods achieve improved reuse of processor registers due wo loop unrolling For the left-hiokiiw

method, we find that the reduced index vector accesses bring references down to roughly 9'7,I f

their previous levels. The loop unrolling accounts for the rest of the decrease.

CHAPTER 3 SEQUENTIAL SPARSE CHOLFSKY FACTO)RIZATION '!

Table 8: Mean memory references and cache misses per floating-point operation References ar,' t,,

4-byte words. Cache is 64 KBytes with 4-byte lines,

11 Left-looking Right-looking M iultifrontal
Method__efs/op Mssp Refs/op Misses/op Refs/opJ .Missesiop

Small:
Column-column 4.04 0.35 4.18 0.29 3.72 u 22
Supernode-column 2.30 0.32 2.13 0,09 2.45)) 17

Large:
Column-column :3.65 0.96 4.06 1 10:3 3.25 1 1_.0
Supernode-column 1.63 092 1.62 0.63 1.67] .0

Overall:
Column-column 3.77 0_58 :3.91 0.53 3.37 0.34
S upernod0e-column 176 0,55 1.71 0.20 1. 1 1, 033

Something else to note is that the references per operation numbers are well above the 1.25 Ideal

number. The reason is simply that not all supernodes are large enough to take full advantage of the

reuse benefits of supernodal elimination.

Regarding the cache performance of the three methods. we also notice an interesting change.

The cache miss numbers for the left-looking method have remained virtually unchanged betweePn the

column-column and supernode-column variants. The numbers for the right-looking and multifrontal

methods, on the other hand. have decreased significantly. This fact ca be understood by consid,,ring

where reuse occurs in the cache. In the left-looking column-column method, the data that is reused I.-

the destination column. In the supernode-column left-looking method. this reuse has not changed

The destination column is expected to remain in the cache, and the supernodes that update it

are expected to miss in the cache, again resulting in a miss rate of approximately one word per

floating-point operation.

In the right-looking and multifrontal methods, updates are now produced from a supernode 1(,

several destination columns. The item that is reused is a supernode. We see three possibilitie,. f',r

the behavior of the cache, depending on the size of the supernode. If the supernode contains a

single column, then the supernode is expected to remain in the cache and the destination column I,

expected to cache miss, resulting in one miss per floating-point operation. If the supernode containS

more than one column but is smaller than the cache. then the supernode is again expected to rniain

in the cache, and the destination is expected to miss. However. many more floating-point operations

are now being performed on each entry in the destination. In particular, if e columns remain in Ilw

cache, then we perform r times as many operations per cache miss. The third possibility. wlhr,.I

supernode is much larger than the processor cache, would cause the destination column to remnain

in the processor cache while the supernode update is being computed, as would happen in Iho lof4-

looking method The result is one miss per floating-point operation. The cache miss nnndlr, !n

Table 8 indicate that the case where a supernode fits in the eache occurs quite frequently. reiiltwtic

CHAPTER 3. SEQUENTIAL SPARSE ('HOLESKY FACTORIZATION 3i)

in significantly fewer misses than one miss per floating-point operation overall

Returning to the performance numbers (Table 5), we note that the right-looking mnethod ine,,vw

the fastest on the DECstation 3100, and the left-looking method is the slowest. The primary c-aus,. ',f

the performance differences is the cache behavior of the various methods The right-looking mo-th,,,

generates the fewest misses, and is therefore the fastest. Similarly, the left-looking me'thod gpnerate,

the most and is the slowest. On the RS/6000. the left-looking and right-looking methods execut. ;it

roughly the same rate. While the right-looking method has the advantage of generating fewer -ach,.

misses, it has the disadvantage of the inefficient propagation primitive.

One thing to note regarding memory system behavior for the supernode-column methods andzt

indeed for all the methods we consider is that the multifrontal approach has an important dlvid

vantage in comparison to the other two approaches, it performs more data movement. This is du,

to two subtle differences between it and the other approaches. The first is in the approaches used

to determine the final values of a column. The multifrontal method gathers all updates to a column

into an update matrix, adds the original values of that column into the ipdate matrix, computes the

final values, and then copies these values back into the storage for the column. The left-looking and

right-looking approaches add updates directly into the destination column, thus avoiding this data

shuffling and reducing the amount of data movement, The other difference relates to the manner

in which supernodes containing a single column are handled. The process of producing an update

matrix for a single column and then propagating it is significantly less efficient than the process

used in, for example, the column-column left-looking method, where the update is computed and

propagated in the same step. In the left-looking and right-looking methods, we can fall back to th,

column-column kernels for supernodes containing only a single column. This option does not exist

for the multifrontal method. Because of these two differences, the multifrontal method will produck.

more memory references and more cache misses than might otherwise be expected.

3.3.4 Column-supernode Methods

The supernode-column primitives of the previous section took advantage of the fact that a single'

destination is reused a number of times in a supernode-column update operation to increase ri,ij.,

in the processor registers. They also took advantage of the fact that every column in the sourc,,

supernode had the same non-zero structure to reduce the number of accesses to index vectors. :\

symmetric set of primitives, where a single column is used to modify an ent're supernode, would

appear to have similar advantages. We briefly show in this section that while the advantages are

qualitatively similar, they are not of the same magnitude.

('onsider the implementation of a column-supernode ('omputeUpdatcl) primitive. A - ,ulunm

would be used to modify a set of destinations, appearing something like:

1. for j = t to J do

2. for i= I to n do

CHAPTER 3. SEQUENTIAL SPARSE CHOLESKY FACTORIZATION 31

3. yj [ij = yj [i] + a, • r[ij

Unrolling the j loop by a factor of two yields:

1. for j = I to J by 2 do

2. for i= I to n do
3. y, [ij = y, [i] + aj *x[i]

4. yj+t[i] = y+i[i]+ a,+, *z[i]

The inner loop loads two entries of y, one entry of x, and stores two entries of y. for a total of

.5 double-word references to perform 4 floating-point operations. In general, a loop that is unrolled
u ways loads u entries of y, one entry of x, and writes u entries of y to perform 2u floating-point

operations, for a ratio of 2 + 1/u memory references per floating-point operation. This ratio is still

more than two-thirds of the ratio obtained without unrolling, and double the ratio obtained by
unrolling the supernode-column primitive (Recall that this ratio was 1 -+-2/u references per floating-

point operation.). Thus, while column-supernode primitives realize some advantages due to reuse of
data, they are not nearly as effective as supernode-ýolumn primitives. We therefore do not further

study such methods.

3.3.5 Supernode-pair Methods

In this section, we consider a simple modification of the three supernode-column factorization meth-

ods that further improves the efficiency of the computational kernels and also reduces the cache miss

rates. These improvements will be accomplished through the use of supernode-pa:r primitives that

modify two destination columns at a time.

Devising factorization methods that make use of supernode-pair primitives is quite straightfor-
ward. For all three approaches, the ComputeUpdate() primitive involves a pair of simultaneous rank-

k updates, using the same vectors for each update. To handle update propagation in a left-looking

method, we maintain two full vectors, one for each destination column, and use the supernod,-
column left-looking propagation primitive to update each. The bookkeeping necessary to deterrnin.

which supernodes modify both current destinations, and which modify only one or the other is

not difficult. The right-looking and multifrontal methods are also quite easily modified. In both,
we simply generate the updates to two destination columns at once. In the right-looking method t.
the two updates are propagated individually using the supernode-column right-looking propagati',,

primitive.

The ComputeUpdate() step in a supernode-pair method looks like the following:

f. for k = I to K do

CHAPTER 3. SEQI'ENTIAL SPARSE ('HOLESK Y F.4'TORIZATION 32

2. for i= I to n do

3. Y1 i]y']i + a I k xk~I~

4. Yil i + a÷ k r k

A set of K source vectors .rk are used to rnodify a pair of destination vectors y, "'his kernel can

be unrolled, producing:

1. for k-= I to k by 2 do

2. for i= I to n do

3. = y1[] +a+ * .i1 + a rk+, [

4. Y2 [i] = Y2 [1 ± I +(I" * Xrk i 1 + a2 k+ I * .rk + 11[i

Counting memory references, we find that 2 entries of x and one entry of each Y are loaded

and one entry of each y is stored during each iteration. Each iteration performs t; floating-point

operations. Thus, a ratio of 1.5 memory reference per operation is achieved. In general, by unrolling
u ways we achieve a ratio of 1/2 + 2/u memory references per operation. which is half that of the
supernode-column kernel. As it turns out, the ratios are not directly comparable. The degree of

unrolling is limited by the number of available registers, and the supernode-pair kernel uses roughly
twice as many registers as the supernode-column kernel for the same degree of unrolling. The

net effect is that on a machine with 16 registers, like the DECstation 3100, we can perform 8-b%-I
unrolling (8 source columns modify one destination column), for a memory reference to floating-point

operatior ratio of 1.25, or we can perform 4-by-2 unrolling, for a ratio of 1.0. On the IBM RS/6000

which has 34 double-precision registers, the difference in memory references is significantly larger
We can perform 16-by-I unrolling, for a ratio of 1. 125, or we can perform 8-by-2 unrolling, for a rati,)

of 0.75. Another important advantage of creating two updates at a time is that each iteration of
the loop updates two independent quantities, yj[i] and y2[i], leading to fewer dependencies between

operations and thus increasing the amount of instruction-level parallelism.

We now present performance figures for the three supernode-pair methods (Table 9), using the

identical supernode-pair kernel for each. We also present memory system data for the three niet hods
in Table 10. The memory reference numbers are for a machine with 32 double-precision floating-

point registers. These numbers are estimates, obtained by compiling the code for a machine with
16 registers and then removing by hand any references that we behieve would not be ricossary if

the machine had 32 registers. We believe these numbers are more informative than numbers for a

machine with 16 registers would be, since reference numbers for the latter would be quite similar tl

those of the supernode-column methods. Also. the trend in microprocessor designs appears to bho

towards machines with more floating-point registers.

In Tables II and 12 we present summary information, comparing supernode-pair methhods with

the methods of previous sections. The performance dat.a shows thal supernode-pair rmethods g,'

CHAPTER 3. SEQUENTIAAL SPARSE ('HOLESK.,Y FA("TORIZATION

Table 9 Performance' of stipernode-pair methods on DE(station 1100 and.1 IBNI RS/~o0.oiU.X,,1.
:120

11 Left-looking Right-looking iMultifrontal I
____"_MFLOPS MIFLOPS M FLOPS
Problem_ DEC 1 IBM DE(C I IBM DEC IBM.
LSHP3466 1,95 7 86 2.577 S01 1.95 771
BCSSTKI4 2.28 11.74 3.08 11.39 2.52 1236 I

[i i
GRIDIOO 2.05 8.90 2.72 8.29 2.02 8
DENSE750 2.46 20 13 2.,54 2085 2.47 19 65
BCSSTK23 2.21 16.20 2.48 14.17 2.26 15 85
BCSSTKI5 2.'2 9 16.77 O2.6 15.57 2.47, 16.96
BCSSTKI$ 2.08 14.30 2.46 11.82 2.16 14.22
BCSSTK16 2.22 1592 2.82 15ý59 2.57 16.67
Means:
Small 2.08 9.24 2.77 9.00 ,I2.14 9 9

Large 2.19 15.59 2.64 14.09 2.39 1.5.85
Overall 2t18 t2.73 I2.66 12.03 2. 12.631

Table 10: References and cache misses for supernode-pair methods, 64K cache with 4-byte ,ach,
lines.

P l Left-looking Right-looking Multifrontal
Problem Refs/op.I Misses/op 11Refs/op Misses/op RefsioIMisso

LSH1P3466 2.08 0.21 1.77 0.09 2.06 0 17
B('SSTK14 1.50 0.29 1.38 0.08 1.56 1 f)
GRIDIO0 1.85 0.28 1.64 0.09 2.02 17
DENSE750 0.80 0.55 0.77 0.54 0.80x 7

BCSSTK23 1.06 0.56 1.05 0.44 1,09 5 1
BCSSTKI5 1.03 0.54 1.00 0.39 1 04 0,_1-1
BCSSTKI8 1.21 0.57 1.19 0.40 1.24 _ ,.1_ i
BCSSTK16 1,13 0.53 1.08 0.30 110 to 0.36

Means:
Small 1.78 0.26 1.581 0.08 185 0 17
Large 1.12 0155 1.08 0.36 1 12 142
Overall 1.22 0 39 115 0.16 1 24 2M

CHA.PTER 3. SEQUENTIAL SPARSE (CHOLESKY V "TORIZATION

Table II Mean performance numbers on DECstation 3100 and IBM RS/6000 Model 320

Left-looking Right-looking Multifrontal
_FL______ MFLOPS MFLOPS S

Method DEC IBM DEC IBM DEC 13M
Small: _

Column-column 130 4.65 127 2 68 1.46 6 30
Supernode-column 1.94 7.60 2.59 7 69 2.00 7 57Supernode-pair 2.04 9.24 -2.77 9.00 2.14k 909

Large: "'T...___
Column-column 0.99 5.61 0.94 27.79 L13 784
Supernode-column 1 63 10.81 1.99 10.20 1.•5 11.08
Supernode-pair 2.19 5 15.559 2.64 14.09 2.39 i 1585

Overall: _ _
Column-column 1.07 .5.2.51 1.08 3.05 1.24 7.27
Supernode-column 1 1.74 9.51 2.10 9.30 1.86 9.55
Supernode-pair 2.18 12. 73 2.66 12.03 2.28 12 63

significantly higher performance than the supernode-column methods. The performance increase is

between 20% and 30% over the entire set of benchmark matrices for both machines, with an increase
of 30% to 45% for the larger matrices. The memory reference data of Table 12 indicate that the

practice of modifying two columns at a time is quite effective at reducing memory references. For all
three methods, the memory reference numbers are roughly 30% below the corresponding numbers
for the supernode-column methods. The supernode-pair numbers are above the ideal of 0.75. but

they are still quite low.

The cache miss numbers for the supernode-pair methods are substantially lower as well. For
example, the numbers are 30% lower for the left-looking method. This difference can be understood

as follows. In the left-looking supernode-pair method, a pair of columns is now reused between

supernode updates. When a supernode is accessed, it will typically update both columns, thu.
performing twice as many floating-point operations as would be done in the supernode-colurtri

method. The cache miss numbers for the right-looking and multifrontal methods have improved by
roughly 15%, not nearly as much as they did for the left-looking method. Recall that we described

the cache behavior of these methods in terms of the sizes of the supernodes relative to the size of the
cache. Of the three cases we outlined, only the case where the supernode is larger than the cache

benefits from this modification. We note that the right-looking and multifrontal cache miss rates

are still significantly lower than the left-looking numbers.
Thus, the performance for supernode-pair methods can be explained as follows. The perfornianct,

gains from the supernode-pair method on the DECstation :1100 are due mainly to the reduictiii

in cache miss rates. We note that the right-looking method has the lowest miss rate of the thr,
methods, and achieves the highest performance as well. Recall that the decrease in memory referimces

CHAPTER 3, SEQUENTIAL SPARSE ('HOLESKY FACTORIZATION 35

Table 12: Mean memory references and cache misses per floating-point operation References art- t,,
4-byte words. Cache is 64 KBytes with 4-byte lines

Left-looking Right-looking Multifrontal

Method Refs/op i Misses/op Refs!/op Miýsses/op Refs/op !Misses!,

Sm all: _ _ _ _ _" __ _
[Column-column 404 0.35 4.18 0ý29 3.721 122.

Supernode-colurnn 2.30 0.32 2_ 13 0.09 2_45 0) 17
Supernode-pair 1.78 0.26 1.58 " _0.0e 1._5__ __ 17
Large: __ _
Column-column 3.65 0.96 4 06 1-03 325 1,03
Supernode-column 1.63 0.92 1.62 0.63 o.67___.69

{Supernode-pair 1 12 0.55 1.08 0.36 112 0.42
Overall:
Column-column 3.77 0.58 3.91 0.53 3.37 044
Supernode-column 1.76 0.55 __1.71 0.20 1.81 0.33

Supernode-pair 1.22 0.39 1.i5 . 0,16 1.24 0.28

is not as relevant for the DEC'station 3100, since the numbers we give assume a machine with 32

registers. The 16 registers of the DECstation limit the memory reference benefits of updating a

pair of columns at a time. The performance gains on the IBM RS/6000 are due to three factors.

First. the number of memory references has been significantly reduced. Second. the supernode-pair

kernel updates two destinations at once in the inner loop, allowing for a greater degree of instructin

parallelism. Finally, the supernode-pair method decreases the number of cache misses. The overall

result is a 40% increase in performance for the larger matrices. Uinfortunately. we are unable to

isolate the portions of the increase in performance that come from each of these three factors.

3.3.6 Supernode-supernode Methods

An obvious extension of the supernode-pair methods of the previous section would be to consider

methods that update some fixed number (greater than 2) of columns at a time. Rather than further

investigating such approaches, we instead consider primitives that modify an entire supernode by

another supernode. Such primitives were originally proposed in [111. By expressing the computation

in terms of supernode-supernode operations, the ComputeUpdate() step becomes a matrix-matrix

multiply. This kernel will allow us to not only reduce traffic between memory and the processor

registers through unrolling, but it will also allow us to block the computation to reduce the traffic

between memory and the cache. The use of supernode-supernode primitives to reduce rmeniorv

system traffic in a left-looking method has also been independently proposed in [36] We uIs, a

simple form of blocking in this section. We discuss alternative blocking strategies in a later sectin,

I

CHAPTER 3. SEQUENTIAL SPARSE CHOLESKf EV4('TORIZATION

A

B

Figure 7: The CompleteSuper() primitive.

Implementation of Supernode-supernode Primitives

We begin our discussion of supernode-supernode methods by describing the implementation of the

appropriate primitives, beginning with the Complete() primitive. Expressed in terms of the columns

of the supernode. the Complete() primitive performs the following operations:

1. forj=l ton do

2. for k= 1 to j- I do

3. cmod(j, k)

4. cdiv(j)

It will also be informative to consider the implementation of this and all other primitives in this

section in terms of dense submatrices. An equivalent description of this computation, in terms of

such submatrices, would be:

1. A4 - Factor(A)

2. B - BA- 1

where A is the dense diagonal block of the supernode, and B is the matrix formed by condensing

the sub-diagonal non-zeroes of the supernode into a dense matrix (see Figure 7). We note that the,,

primitives in this section will all be implemented in terms of columns of the matrix, but we will look

at blocking approaches that are based on dense submatrix computations in a later section.

One thing to note about the above computation is that the inverse of A is not. actually collipuited

in step 2 above. Since A is triangular, the second step is instead accomplished by solving a se(qin-,,

of triangular systems. This step can be done in-place. Another thing to note is that tiw ,-irn,

CHAPTER 3, SEQUENTIAL SPARSE CttOLESKY FCTORIZATION7

Source

T
C

esDest

DD

D
I Update

Figure 8: The NlodifySuperBySupero) primitive.

operation can be performed without consulting the indices for the sparse columns that comprise the

supernode. The whole computation can be done in terms of dense matrices.

The CornputeUpdate() and PropagateUpdate() primitives are significantly more complicated

than the Complete() primitive. The ComputeUpdate() primitive produces a dense trapezoidal

update matrix whose non-zero structure is a subset of the non-zero structure of the destination

slipernode. The PropagateUpdate() primitive must then add the update matrix into the destination

supernode.

The ComputeUpdal e() step involves the addition of a multiple of a portion of each column in

the source supernode into the update matrix. The operation can be thought of in terms of dtnse

submatrices as follows. Assume the destination supernode is comprised of columns df through d;

The only non-zeroes in the source supernode that are involved in the computation are those at or

below row df. These non-zeroes can be divided into two sets. The first is the matrix C' of Figure X.

corresponding to the non-zeroes in the source supernode in rows df through d1 . The second is the

matrix D, corresponding to the non-zeroes in the source supernode in rows below di. The upper

portion of the update matrix is created by multiplying C' by CT. Since the result is symmetric. ondl

the lower triangle is computed. The lower portion of the update matrix is created by multiplying [)

by CT.

Both the Complete() and ComputeUpdate() primitives can easily be blocked to reduce thO

r'ache miss rate. We perform a simple form of blocking in this section, Each supernode ()f the,

matrix is partitioned into a set of panels, where a panel is a set of contiguous columns that fi(t.

wholly in the processor cache. When a ComputeUpdate() operation is performed, the cache r,

loaded with the first panel in the source supernode. and all of the contributions from this pan,1

to the update are computed. The operation then computes contributions from the next panl.

CHAPTER 3. SEQUENTIAL SPARSE CHOLESKY F4('TORIZA.TION :J

and so on. The contributions from an indivi.ual panel are computed using the stipernode-pair

C(omputeUpdate() primitive repetitively. In other words, an update is computed from the panel I,
each pair of destination columns, A similar scheme is employed for the ('omplete() primitive This

panel blocking is appealing because it is probably the simplest and most intuitiv, to implement Wýe
will ronqin.? r!ter.-.:; blocking strategies in a -iibsequient section.

Once the update matrix is computed. the next step is propagation. where the entries of the

update matrix are added into the appropriate locations in the destination supernode. In general.

the update matrix contains updates to a subset of the columns in the destination supernode. and

to a subset of the entries in these columns. The determination of which columns are modified Is

trivial. This information is available in the non-zero structure of the source supernode The more

difficult step involves the addition of a column update into its destination column. To perform this

addition efficiently, we borrow the relative index technique [7, 421. The basic idea is as follows. For

each entry in the update column, we determine the entry in the destination column that is modified

by it. This information is stored in relative indices. If rindez[i] = j, then the update in row i of the

source should be added into row j in the destination. Since all of the columns in the update matrix

have the same structure, and all of the destination columns in the destination supernode have the

same structure, a single set of relative indices suffices to scatter the entire update matrix into the

appropriate locations in the destination.

The only issue remaining is the question of how these relative indices are computed. The pro-

cess of computing relative indices is quite similar to the process of performing a column-column

modification. The main difference is that in the case of the modification, the entries are added into
the appropriate locations, whereas in the case of computing indices, we simply record where those

updates would be added. We therefore use quite similar methods. Note that once these indices have

been computed, the left-looking and right-looking approaches can use the same code to actually

perform the update propagation.

One important special case that is treated separately in both of these methods is the case of a

supernode consisting of a single column, As we discussed earlier, the process of computing a large

update matrix from a single column to some destination and then propagating it results in an increa-se

in memory references and cache misses. A more efficient approach adds the updates directly into

the destination supernode. It is relatively straightforward to implement such an approach, once the

appropriate relative indices have been computed. The implementation involves a small modification

to the supernode-supernode update propagation code, where instead of adding an entry from the,

update matrix into the destination, the appropriate update is computed on the spot and added into

the destination. This special case code is again shared between the left-looking and right-looking

methods.
We have implemented left-looking. right-looking, and multifrontal supernode-supernode noth-

ods, again using the identical Computef'pdate() routine for each. Any performance differences

CHAPTER 3. SEQUENTIAL SPARSE CHOLESKY F ('TORIZATION

Table 13: Performance of supernode-supernode methods on DEC'station 3100 and IBM RS/6(00'
Model 320.

________~ .eft-looking Right-looking Mult ifrontal
_ MFLOPS MFLOPS MFLOPS

Problem DEC I D IBIM DEC IBM
LSHP3466 2.34 7 96 11 2.40 9 79. 1.87 1.95

BCSSTKI4 3.05 13.63 1 3.101 13.51 2.50 11.97
GRIDIOO 2.49 8.86 2.56 8.51 1.87 7.02
DENSE750 3.75 22.77 3.83 22.81 3.68 21,38
BCSSTK23 3.34 19120 3.34 18.50 2.97 17.34
BCSSTK15 3.52 20.50 3.57 20.01 3.17 18.55
BCSSTK18 3.07 15.98 3.02 15.22 2.61 14.54
BCSSTK16 3.41 19.36 3.47 1 19.14 3.12 18"21
M eans: ___

Small 2.59 9.62 2.66 9.45 2.04 8.11
Large 3.32 18.40 3.34 17.87 2.94 16.89
Overall 3.05 114.01 ,3.09 13.87 2.58 12.27

between the three approaches are due entirely to three differences between the methods. First. the

relative indices are computed in different ways. Second, the multifrontal method performs more data

movement. And finally, the methods execute the primitives in different orders, potentially leading

to different cache behaviors.

Performance of Supernode-supernode Methods

We now present performance numbers for the supernode-supernode methods. Table 13 gives factor-

ization rates on the two benchmark machines, and Table 14 gives memory system information 1,i*

present comparative information between these and previous methods in Tables 15 and 16. Theste

tables show that the performance of the supernode-supernode methods is again higher than that of

the previous methods, giving performance that is 10% to 40% higher than that of a supernode-pair

method on the DECstation 3100 over the whole set of benchmark matrices, and 0% to 1097 hizher

on the IBM RS/6000. For the larger matrices, supernode-supernode methods are 20/ to .50('7 faster

on the DECstation. and 5% to 20% faster on the IBM.

Moving to the cache miss information, we note that the miss rates for the three methods ar,

similar, and in all cases they are substantially lower than those achieved by the supernode-pair

methods. For the larger problems, miss rates have decrease by a factor of more than 2 for the right-

looking and multifrontal methods, and by a factor of more than 3.5 for the left-looking method Th,'

reason is the effectiveness of the blocking at reducing cache misses.

The observed performance can therefore be explained as follows. For the larger problems. th,

CHAPTER 3. SEQUENTIALSP.ARSE ('IOLESK'Y F.A('TORIZ.ATIO.U

Table 14: References and cache misses for supernode-supernode methods. 64K cache with ..-11,h
cache lines.

Left-looking Right-looking % ultifrontal
Problem Refs/op Misses/op Refs/op 1 Misses/op] Refs/op N isses/op
LStIP3466 1.85 0 13 1.80 0.11 2.22 0.17
BCSSTK14 1.36 0.11 1.35 0.11 1.59 . 16
GRIDI00 1.74 0.13 1.68 0.11 2.22 1) _ i_
DENSE750 0.81 0 16 0.81 0 16 0.84 0 17
BCSSTK23 1.03 0.17 1.03 0.17 112 022.)
BCSSTK15 0.99 0.14 0.99 0 14 1.07 . 1•
BCSSTK18 1.16 0.19 1.6 60_.19 1.29t 0.25
BCSSTKI6 1.06 0,13 1.06 0.14 1.12 _____18 '

Means: .8_____ ____ 0
Small 1.62 0.12 1.58 .. 0.11 _ .96 _ _0.17

Large 1.07 0.15 1.06 0 .15j1 1.10j 0.20 1
Overall ,i 1.16 014 1.16 0.14 L.29 0.1 1I

Table 15: Mean performance numbers on DECstation 3100 and IBM RS/6000 Model 320.

Left-looking Right-looking Multifrontal
MFLOPS MFLOPS MFLOPS

Method . . DEC IBM DEC IBM DEC] IBM

Small: [[
Column-column 1.30 4.65 1.27 2 68 1.48 6.30
Supernode-column 1.94 7,60 2.59 7.69 2.00 7.57
Supernode-pair 2.08 9.24 2.77 9.00 2.14 _9_09

Supernode-supernode 2.59 9.86 2.66 9 45 [1 2.04 8.11
Large: ,__ , , 1
Column-column 0.99 5,61 0.94 2.79 1.13 7.84
Supernode-column 1.63 10ý81 1.99 10.20 1.85 . 11-08
Supernode-pair 2.19 15.59 2.64 14.09 2.39 15.85
SuPernode-supernode 3.32 18.40 3.34 17.87 2.94 16.89
Overall:
Column-column 1.07 5.25 1.08 3.05 1 24 7 27
Supernode-column 1.74 9.51 2.10 9.30 186 9.55
Supernode-pair 2.18 12.73 266 12.03 2.28 12.63
Supernode-supernode 3.05 1 011 3.09 . 13.72 2.58t 12.27

CHAPTER 3 SEQUENTIAl. SP R'tHOLtSK'k FAt lu Hi/A 1.N

Table 16: Mean ni.mory references aid cache imosw,6 per ti mat n-ji,-if pra, !it-ra ir,
4-byte words. Cache is 64 KPytes vwth 4-bytu liies.

_______ e f_....._ _. Ie -loo i k --ng .i..htK r ..
Method Refs/o .Misses/op Ref, . ; 'fp \ . ,'

Small: -

'Column-column 4 04 o_____ ____ ix_ I 1 7

C,.perno e-colunin 2.30 1 0 32 13____________ 7

Supernocde-pair i 1.7I 1 0.26 IX 57)0s -

Supernode-supernode 1.62 0.12__ _1_5_ 1-7__ I1 ,"

1 Large: _ 4 _ _

Column-column 3.65 0.Y6 406 - ,03 I 3 25

Supernode-column 1.63 0 92 ln' 1 62 63 1

Supernode-pair 1.12_ 0.55___ __0__)36__11.

Supernode-supernode J ! 0 15 1 06 1 51

Ovecall: IT _

Column-column 3 77 0 .58 3 41 1 01 1 :) 37 0 44
Supernode-column 1.76 0.55 , 71 o 0 1 Al 0 33

Supernode-pair 1.22 0.39 1 15 0 16 i 11

Supernode-supernode I 16 0 14 1 16 f .. 14 1. 1 29 u , -

ca-he miss rates have decreased dramatically, leading to higher perfornmance For the sirallr pr,1.,

leIms. performance in many cases has decreased. because the effort spent searrhing for qopport uni, i-

to increase reuse is wasted. Overall. supernode-supernode methods significantly increa.L,- ',rfr

mance over supernode-pair methods.

3.3.7 Supernode-matrix Methods

We now consider methods based on primitives that produce updates frori a single superno,.r- 1, th,-

entire remainder of the matrix. The multifrontal method is most frequently expressed In terns 4'

such primitives (see, for example. [1]). One thing to note about supernode-matrix methods i• tial

they are all right-looking. We therefore are restricted to two different approaches. right-loking al,

mulirfrontzalI.

Before discussing the implementation of supernode-matrix primitives, we note that the ('ompb,".

and ComputeUpdate() primitives are typically merged into a single operation. The final vah,,>

the supernode are determined at the same time that the updates from the supernode ti. 0hw r,ý>t

of the matrix are computed. Our implementations perform these as a single step a;s well hut ,,r

discussion is simplified if we consider them as separate steps

We now briefly discuss the implementation of supernode-matrix prinutives rh,. irnplhimit, i

tion of ComputeUpdate() is relatively straightforward. The trapezoidal updiate matrix fr, 'nh,

supernode-supernode rr- thods becomes a lower triangular matrix This update matrix i- ,ryijoji' , i

(iii.PTER.3SE ENALPASE(ILEKYF(T iZHN

Table 17 Performance of SUpeýrnode-niatriix rut -hi ds on D)E('st at n 3 10 and~t~ IBNI 3 RS/ý!t %'1 I XI

___________ITRight-looking Xlultifrontal

_________ MLOPS j MFLOPS1
Problem ifDEC 1 .IBM DEC 1IBI
LS HP3466 243 S.33 1 % t)

BCSSTK14 3I.os 13156 2.54~ 12 5m
G RID 100 2 59 9.06 72013 8 4
DENSE75O 3. 5 j22.81 1 :.3 2 1 29
BC'SSTK23 :3-32 18 86.3 F2.94 1
BCSSTh 5, :3 52 120 16_ 3.02 IS 4.
BCSSTK 18 1 3.011 1.563 [2.65i 15521
BCSSTKI 3.421 19.261 3 -14- 18 5j
Means: _ __1

Small Tf2.67 9.86 2 2153 9.141
Large 3.30 18.13 [2 92 17.50
Overall jf:1.09 14.10 112.63 [_13.273

by performing a symmetric mnatrix-matrix multiplication. C = BR". where 8 I's tI he portion ofA the

source supernode below the diagonal block. Since the result irvatrix C is sýn111%.. I\theloer

triangle is computed. WVe use the same panel-based blocking as we did for the sproe~pro~

methods to feduce cache misses-

The propagation of the update matrix for the right-looking method is done using thje propagat ati

code from the right-looking supernode-supernode method. In fact, the supernode-supernoi(fie an',

supernode-matrix right-looking methods are nearly identical. The difference is in the order in whichi

primitives are invoked. In the supernode-supernode method, the update to a single supernfod'e -
.immediately added into the destination. In the right-looking supernode- matrix method. the updiater-

from a single supernode to all destination supernodes are computed, and the-n these updates areý

propagated one at a time to the appropriate destination supernodes.

In Table 17 we present performance numbers for the supernode-m-atrix schemes, and in] Tablle I
we present memory system information. We present comparative information in Tables 19 and 20

Surprisingly, the performance of the supernode- matrix methods is quite similar to the perfo.rruato,

of the corresponding supernode-supernode methods.

One would expect that in moving from an approach that produces updates from a supernodfe

to a single destination supernode to an approach that produces updates from a suiperniode to Th'.

entire rest of the matrix, the amount of exploitable reuse would inrrease significantly. The ulint r'

reference figures in Table 18 indicate that this is riot the case. A number of factor,,. account fir th-

lack of observed Increase. The most important factor has to dto with the relative sizes of spr

mnatrix and supernode-supernode updates Specifically. a single supernode-mat rix update, typvcall.

corresponds to a small number of supernode-sulpernode updates. 'rher*rfor('. lit tle reuise i., 1.ýllt

CHAPTER 3. SEQUENTIAL SPARSE ("1I0LESKY FAC TORIZATION

Table 18: References and cache nusses for supernode-rat rix rit h,,ds. t64 K cache with -, ,
litles.

Right-looking .Multrifrutal

Pbtem .. .Refs/op M isses/op Refs/op I Mtsses/op

LSHP3466 1.75 0.I 2,0S 0 17
BCSSTKI4 1.33 0.12 1 i 56 . 1) 1%
GRID100 1.64 JA 12 '2 03: 0 17
DENSE750 0.81 016 0 84 0 17
BCSSTK23 1.02 0.18 1 i1 021
BCSSTK15 0.98 0.15 1.06 0 17
BCSSTK18 1.14 0 19 1 26 0, 24
BCSSTKI6 106 0.14 1.11 o 17

Small 1 55 0.12 1.86 1t7

Large 106 0 16 1 14 0 19
Overall 1. 15" W 14 1 26 o-18-

Table 19: Mean performance numbers on DECstation 3100 and IBM RS/6000 Model 321J

______________ ~ Left-looking Rght-looking Miiltifrontal

MetodD OPSB M FLOPS M FLOPSMethod I DEC I I B DEC! I BM DE CI IBM

Sm all: _ i _
Column-column 1.ý30 4 -.65 1.271. 2.68 1.48 '6.30Supernode-column 1.94 7.60 2.59 7.69 2.00 7.57

Supernode-pair 2.08 9.2_4- 2.77 9.00 2.14 9.09
Supernode-supernode 2.59 9.86 2.66 9.45 2.04 S 11
Supernode-matrix - 2.67 9,86 2.15 9 141
Large: _
Column-column 0.99 5.61 0.94 2.7911 1.13 7 S-1
Supernode-column 1.63 10.81 1,99 10.20 1.85 110•
Supernode-pair 2.19 15.59 2.64 14.09 2.39 15.8.5
Supernode-supernode 3.32 18.40 3.34 17.87 2.94 16 89
Supernode-matix 3.30 18.13 2j2.92 17 50

Overall: .. I
Column-column 1 07 5.25 1.08 i 3.05 1.24 7 27
Supernode-column 1.74 9.51 "2.10 9 30 1.86 9 55 i
Supernode-pair 2 I. 12-73 2.66 12.03 2.2S 12'61
Supernode-su pernode 3 05 14.01 3.09 13.72 12
Supernode-matrix _____ - 3.09 1.010 26:31 13 2 7

CHAPTER 3 SEQUENTIAL SPARSE CHOLESKY FAC'TORIZATION 44

Table 20: Mean memory references and cache misses per tloating-point operation Refr,ucs ar,- it,
4-byte words. Cache is 64 KBytes with 4-byte lines.

Left-looking Right- looking M uitifrnt al
Method 1t Refs/op Misses/op R efs!P 1 "Msses/-p I Refs/o is,
Small: ___.. 1 __ _

Column-column 4.04 0.35 4I8 0 029 3 72 1 0_ "2"2
Supernode-column 2.30 0.32 2.13 009 o 1745 i
Supernode-pair 1.78 0.26 1.58 h008 1 5 17

Supernode-matrix 1.551 0-12 1. 86.

Large: _
Column-column 3.65 0.96 40.6 1.03 3.25 1 03
Supernode-column 1.63 0,92 1.62 0.63 1.67 0.69
Supernode-pair 1.12 0,5L 1.08 0.36 1.12 0.42
Supernode-supernode 1.07 0.15' 1.06 0.15 1 15 6:120
Supernode-matrixn 01_ 1.06 0.16 1.14 O.9
Overall:Column-column 3.77 0.58 3.91 0.53 3.37 0 44

Supernode-column 1.76 0.55 1.71 0.20 1.81 0.33
Supernode-pair 1.22 0.39 1.15 0.16 1.24 . 0.28Supernode-supernode "-16 0.14 1,16 0' TT1 1-29 7 0 1ý
Supernode-matrix 1.1501 0.141 1 26 1$

splitting a supernode-matrix update into a set of supernode-supernode updates

Another important reason for the lack of improvement is the existence of significant fractions of

the computation that are not affected by the change from supernode-matrix to supernode-supernode

updates. One example is the propagation of updates, a step that is performed by each of the

methods. This computation achieves extremely poor data reuse, and generates a significa-it fraction

of the total cache misses. For example, the assembly step in the multifrontal supernode-supernode

method accounts for roughly 12% of the memory references, yet it generates roughly 30% of the

total cache misses. The reuse in this step is not increased in going to supernode-matrix primitives.

The small performance differences between the supernode-supernode and supernode-matrix ret h-

ods are easily understood. Cache miss numbers are nearly identical for the two, making a significant

component of runtime identical. Memory reference figures are slightly lower for the supernode-

matrix methods, especially for the the small problems. The main reason is simply that the increased

task size of the supernode-matrix methods leads to slightly fewer conflicts between the numbers of
columns in the task and the degree of unrolling. The supernode-matrix methods achieve slightl•

higher performance overall on both machines.

CHAPTER 3. SEQUENTIAL SPARSE CttOLESKY FACTORIZA.TION -15

3.3.8 Summary

This section has studied the performance of a wide variety of methods for performing sparse C(holesky

factorization. In doing so, we have identified the aspects of these methods that are important for

achieving high performance. We showed that performance depends most heavily on the effici•enclt',.

of the primitives used to manipulate structures in the matrix. The simplest primitives. In which

columns modified other columns, led to low performance. They also led to large differences in

performance among the left-looking, right-looking, and multifrontal approaches. since each of thes,'

approaches used different primitive implementations. As the structures manipulated by the prim-

itives increased in size, the efficiency of these primitives increased as well. The primary source of

performance improvement was the increased amount of reuse that was exploited within the primll-

tives. Another effect of using primitives that manipulated larger structures was that the differences

between the left-looking, right-looking, and multifrontal approaches decreased. These primitlie.

allowed more of the factorization work to be performed within code that could be shared among

the three approaches. Thus, while the conventional wisdom had previously been that the high-

level approach, whether left-looking, right-looking, or multifrontal, is an important determinant of

performance, we have shown that it actually has a very small impact.

Our attention so far has been focused on the performance of sparse factorization methods on two

specific benchmark machines. We now attempt to broaden the scope of our study by considering the

effect of varying a number of machine parameters. In particular. we consider the impact of different

cache designs.

3.4 Cache Parameters

This chapter has so far only considered a memory system similar to the one found on the DECstation

3100, a 64 KByte direct-mapped cache with one-word cache lines. We now consider a number of

variations on cache design, including different cache sizes, different cache line sizes, and different

set-associativities.

3.4.1 Line Size

A common technique for decreasirg the aggregate amount of latency a processor incurs in waiting

for cache misses is to increase the amount of data that is brought into the cache in response to a

miss. In a standard implementation of this technique, the cache is divided into a number of rachc

hines. A miss on any location in a line brings the entire line into the cache. This practice is of course

only beneficial if the extra data that is brought in is requested by the processor shortly after being

loaded. Many programs possess this spatial locality property. We now evaluate the extent to which

this property is present in sparse Cholesky factorization.

CHAPTER 3. SEQUENTIAL SPARSE CHOLESKY FACTORIZATION

In Figure 9 we show the magnitude of the increase in total data traffic that results when the siz,

of the cache line is increased. These figures show the percent increase in cache traffic, averaged over

the entire benchmark matrix set, when using a particular factorization melhod on a cache with a
larger line size, as compared with the traffic generated by the same method on a cache with a 4-byte
line size. Note that we do not mean to imply by our data traffic measure that an increase in traffir
is bad. An increase is almost unavoidable, since more data is fetched than is requested. The Lama

traffic measure is simply a means of obtaining an absolute sense of the effect of an increased line size

The amount of traffic increase that constitutes effective use of a cache line is difficult to quantify.
and in general depends on the relation between the fixed and the per-byte costs of servicing a tinis

We note that in moving to a 16 byte line size, the increase in traffic is between 5% and 10%/. thereby

reducing the total number of misses by almost a factor of four. This represents an excellent use uf
longer cache lines. On the other hand. traffic is increased by between 100% and 350% when we move
to a 256 byte line. While the result is a factor of between 14 and 32 decrease in cache misses, it is

not clear that the cost of moving 2 to 4.5 times as much data between memory and the cache will
be made up for by the decrease in the number of misses.

Of the three high-level approaches, the data shows that the multifrontal approach is best able
to exploit long cache lines. This is to be expected, since this method performs its work within
dense update matrices. The data brought into the cache on the same line as a fetched item almust
certainly belongs to the update matrix that is currently active, The other two methods frequently
work with disjoint sets of columns. Data fetched in the same cache line as a requested data item

often belong to an adjacent column that is not relevant to the current context. Also, for reasons thai
will become clear in a later section, the fact that the update matrix occupies a contiguous area in

memory means that the multifrontal method incurs less cache interference than the other methods

Cache interference has a larger impact on overall miss rates when cache lines are long The extra
data movement in the multifrontal method therefore has some benefit to offset its cost on machines

with long cache lines.

We now focus on a subset of the above data. In order to better understand the performance of
the IBM RS/6000 Model 320, we look at the cache miss numbers for a cache with 64 byte cache
lines, which is the line size of this machine. Table 21 shows the increase in traffic for this line size

as well as the absolute amount of cache traffic that results for each of the methods. These numbers

are again averaged over the entire benchmark set. Note that while the increase in traffic is smallest

for the multifrontal approach, the overall miss rates for the multifrontal approach are still higher

than those of the other approaches.

3.4.2 Set-Associativity

Another technique to reduce the aggregate cost of ca, he misses is to increase the spt-associativilt 4
the cache. As we mentioned earlier, a direct-mapped cache maps each memory location to a slriti,

CHAPTER 3. SEQUENTIAL SPARSE CH(JLESKY FACTORIZATION 417

3" U

07

Columncoium Column-columrn
Igo 0 Supernode-column 3M o Supernode-column

_ + Supernode-pair C + Supernocle-pair
mi Supernode-supeodce w Supernode-supernocde

2w - aSupornods- matrix

as - so

S 6 32 In 13 " 4 S Is 32 U 15 3M

Cactio.,ne size (bytes) Cache lime size DbyTes,

Leti-laooing Righl-looktung

-38

a Cadlumrt-column
no o Supernode-column

+ Supernode-pair
w Supernode-SuPemoncds
&3 Superno~de- matrix

4 8 is 32 Is 13 3

Cache line size (bytes)

-Figure 9: Increase in data traffic due to longer cache lines. Cache size is 64 KBvtes in all css

CHAPTER 3. SEQUENTIAL SPARSE CHOLESKY FACTORIZATIu ,N 4X

Table 21: Effect of increasing cache line size from 4 bytes to 64 bytes, for 64 KByte cache. Memory
system traffic is measured in 4-byte words.

Left-looking Right-looking Multifrontal
Traffic: Incr. in Traffic: incr. in Traffic: . lncr in-1

Problem Words/op traffic Words/op traffic Words/op traffic
Column-column 0.90 55% 0.88 64% 0.52 18.
Supernode-column 0.82 48% 034 75% 0.41 24%;
Supernode-pair 0.54 41% 0.27 61% 0 33 20%
Supernode-supernode 0.20 43% 0.20 45% 0.22 2272
Supernode-matrix - [- 0.20 41% 0.22 20%

Table 22: Effect of increasing cache set-associativity from direct-mapped to 4-way set-associativp
Cache is 64 KBytes and line size is 64 bytes. Traffic is measured in 4-byte words.

_Left-looking Right-looking Multifrontat .
Traffic: Decr. in Traffic: Decr. in Traffic: Decr. in

Problem Words/op traffic Words/op traffic Words/op traffic
Column-column 0.56 38% 0.46 48% 0.47 10%
Supernode-column 0.61 25% 0.19 45% 0.32 23%
Supernode-pair 0.43 20% 0.16 39o 0.26 21%
Supernode-supernode 0.15 26% 0.14 31% 0.18 19%
Supernode-matrix -0.14 29% 0.18I

location in the cache. When a data item is brought into the cache, the item that previously resided

in the same cache location is displaced. A problem arises when two frequently accessed memory

locations map to the same cache line. To reduce this problem, caches are often made with a small

degree of set-associativity, where each memory location maps to some small set of cache locations.

When a memory location is brought into the cache, it displaces the contents of one member of
this set. With an LRU (least recently used) replacement policy, the displaced item is the one that

was least recently accessed. While set-associative caches are slower and more complicated than

direct-mapped caches, they often result in a substantial decrease in the number of cache misses

incurred.

In Table 22 we show data traffic volumes (measured in 4-byte words per floating-point operation I

for a 64 KByte, 4-way set-associative cache with 64-byte lines. Note that these parameters are quite

similar to those of the RS/6000 cache, the only difference being in the cache size. The table also

shows the percent decrease in traffic when 4-way set-associativity is added to a 64 KByte cache with

64-byte lines. These numbers are again averages over the entire benchmark set. We see from these

numbers that set-associativity produces a significant miss rate reduction for all of the factorization

methods.

CHAPTER 3. SEQUENTIAL SPARSE CHOLESKY FACTORIZATION 49

3.4.3 Cache Size

Up to this point in this chapter, we have only presented cache miss data for 64 KByte caches

We now consider the effect of varying the size of the cache for the various methods that we havy
considered. The curves of Figures 10 show the miss rates for a range of cache sizes for matrix

BCSSTK15. The three graphs depict the cache behavior for the three different high-level approaches

(left-looking. right-looking, and multifrontal), and the individual curves within each chart show the
cache behaviors for the different primitives. In the interest of saving space we show charts for a

single matrix, BCSSTK15. We have looked at data for other matrices, and found their behavior to

be quite similar. Similar charts for other matrices can be found in [381.

While exact explanations of the observed behavior would be impractical, we now provide brief,
intuitive explanations. We begin by noting that a 2 KByte cache yields roughly 100% cache read

miss rates for each of the methods, implying that the differences in behavior between the various ap-

proaches are determined by the number of read references that the approaches generate per floating-

point operation. The multifrontal method generates the fewest references among the column-column

methods, thus it generates the fewest misses. Similarly, the supernode-column methods generates
fewer references than the column-column methods, explaining their lower cache miss numbers.

As the size of the cache increases, we observe two distinct types of behavior. The methods that do

not attempt to reuse data (column-column, supernode-column, and supernode-pair methods) realize
a gradual decrease in miss rate, as more of the matrix is accidentally reused in the cache. Note that

the miss figures fall more quickly for the two right-looking methods, because of the different manner
in which reuse is achieved. As an example, note that the left-looking and right-looking supernode-

column methods achieve roughly equal miss rates with a 2 KByte cache. When the cache size is

increased to 128 KBytes, the left-looking method incurs nearly twice as many misses as the right-
looking method. From a previous discussion, we know that right-looking methods achieve enhanced

reuse when supernodes fit within the cache. A larger cache makes it more likely that supernodes

will fit. The left-looking methods do not share such benefits.

The methods that block the computation to reuse data (supernode-supernode. and supern-.le-

matrix methods) show significantly different behavior. At a certain cache size, which happens to

be roughly 8K for this matrix, the miss rates begin to fall off dramatically. This is because th-
blocking strategy relies on sets of columns fitting in the cache. When the cache is small, one or

fewer columns fit, thus achieving no benefit from the blocking. Once the cache is large enough to

hold a few columns, then the benefit of blocking the computation begins to grow. We observe that
the miss rates fall off quickly for the blocked approaches,

CHAPTER 3. SEQ UENTIA L SP.4RSE CHOLESK Y FACTORIZATION 50

Los ~ A Column-column a. X A Column-cooumn
U..

0 Supernode-column 1 0Supemod~e-coiumn
+ Supernode-pair + Supomocle-pair

it Supemnoce-supemocle W Supemoicde-supe4nodle
LWA Supemode-matrix

Cache size (Kbyles) Cache size (Kbyles)

Left-looking Right-looking

0.- a.a Columin-column
o Supwirnode-woumo

.4 -+ Sup-sode-w~
a Supernode~upemiode
A Superniode-matrix

Cache sie. (Kbyies)

W~ltiftntal

Figure 10: Cache miss behavior for various methods, matrix BCSSTK15-

CHAPTER 3. SEQUENTIAL SPARSE CHOLESKY FA4CTORIZATION 51

BT

B c

Figure 11: Update creation,

3.5 Alternative Blocking Strategies

It is clear from the figures of the previous section that the simple panel-based blocking strategy that

has been employed so far is not very effective for small caches. The reason is clear: the amount

of achieved reuse depends on the number of columns that fit in the cache. In a small cache, few

columns fit so the reuse is minimal. This section considers the use of different blocking strategies

We consider the impact of a strategy where square blocks are used instead of long, narrow panels.

3.5.1 The Benefits of Blocking

We begin by describing an alternate strategy for blocking the sparse factorization computation, and

describing the potential advantages of such an approach. This blocking strategy will be described

in terms of the multifrontal supernode-matrix method, although the discussion applies to the other

supernode-supernode and supernode-matrix methods as well. Recall that in the multifrontal method.

a supernode is used to create an update matrix. Consider the matrices of Figure 11. The B matrix

represents the non-zeroes within the supernode. The matrix B is multiplied by its transpose to
produce the update matrix C. In the previous section, this computation was blocked by splitting B

vertically, into a number of n.irrow panels. Figure 12 shows the case where the supernode is split

into two panels. A panel is loaded into the cache and multiplied by a block-row of the transpose of

B, which is actually the transpose of the panel itself. The result is added into C. We now brieflh

examine the advantages and disadvantages of such an approach.

To better understand the panel-oriented blocked matrix multiply, it is convenient to think f

the matrix-matrix multiply as a series of matrix-vector multiplies. The matrix in one matrix-v,,citr

multipiy is a portion of the panel that is reused in the cache; the vector is a single column from thII

CHAPTER 3. SEQUENTIAL SPARSE CHOLESKY FACTORIZATION 52

BT BT

B CB C

Figure 12: Panel blocking for update creation.

transpose of the panel; the destination vector is a column from the destination matrix (see Figure 13).

Thus, to produce one column of the destination, the code touches the entries in the block, one column

from the transpose, and of course the de 'ination column. In terms of cache behavior, we expect

the block to remain in the cache across the entire matrix multiply. Consequently, once the block

has been fetched into the cache, the fetching of both the block and the column from the transpose

causes no cache misses. Only the destination column causes cache misses. If we assume that a
panel is r rows long and c columns wide and that such a panel fits in the processor cache, then

2cr(r + 1)/2 operations are performed, and rc + r(r + 1)/2 cache misses are generated in computing

the entire update from a single panel. It is reasonable to assume that a panel is much longer than it

is wide, so we can ignore the rc term in the cache miss number, By taking the ratio of the resulting

quantities, we see that 2c floating-point operations are performed for every cache miss. The problem
with such an approach is that the program has no control over the number of columns in the panel.

The parameter c is determined by the size of the cache and the lengths of the columns in the source

supernode.

As we saw in the previous section, with small caches and large matrices the panel dimension

c may be too small to provide significant cache benefits. It is clearly desirable to allow a blocked

program to control the dimensions of the block. The benefits of doing so have been discussed In a
number of papers (see, for example, [19]). We now briefly explain these benefits.

In a sub-block approach, the matrix B is divided both vertically and horizontally. A single sub-

block of B is loaded into the cache, and is multiplied by a block-row from BT. The result is added

into a block-row of C (see Figure 14). As can be seen in the figure, the contribution from a sub-blwck
-f B to C is computed by performing a matrix-matrix multiply of the block with the transpose ,f

the blocks above it in the same block-column. The lower-triangular update that is added into Ohe

CHA PTER 3. SEQ UENTIA L SPA RSE CHO L ESK Y FA CTORIZA TION 53

BT BT

C C
B B

Figure 13: Matrix-matrix multiply as a series of matrix-vector multiplies.

B B

Figure 14: Submatrix blocking for update creation.

CHAPTER 3. SEQUENTIAL SPARSE CHOLESKY FAC('TORIZATION 74

diagonal of C is computed by performing a matrix-matrix product of the block with its transpose

To explain the cache behavior of such an approach. we again consider the block niatrix-matrix

multiply as a series of matrix-vector multiplies. In this case, we can choose the dimensions r x

of the block to be reused in the cache. For each matrix-vector multiply, the reused block remain.-

in the cache, while a column of length c is read from the transpose and a column of length r 1>
read from the destination. In the sub-block case, the column from the transpose does not come

from the block that is reused in the cache (except in the infrequent case where the block on the
diagonal is being computed). In terms of operations and cache misses. 2rc operations are performed
during each matrix-vector multiply. and cache misses are generated for a column of length r and ;t
column of length c. We again assume that the initial cost of loading the reused block into the cache

can be ignored. To maximize performance, we wish to minimize the number of cache misses per
floating-point operation, subject to the constraint that the r x c block must fit in the cache. In other

words, we want to minimize r + c subject to the constraint that rc < C. where C is the size of the
cache. This minimum is achieved when rc = C and r = c = v@i,. Thus, the maximum number of

operations per cache miss is 2c 2 /2c = c, and that maximum is achieved using square blocks that. fill

the cache. This ratio may appear worse than the 2c ratio obtained with a panel-oriented approach.
but recall that r will be much larger in general for square-block approaches.

3.5.2 The Impact of Cache Interference

Since the use of a square-block approach has the potential to greatly increase reuse for large matrices
and small caches, we now evaluate factorization methods based on such an approach. The irriple-

mentation of a multifrontal square-block method is relatively straightforward. We have implemented

such a method and simulated its cache behavior. The results were somewhat surprising. The mitss
rates for small caches were slightly lower than those obtained from panel-blocked approaches. but
they were not nearly as low as would have been predicted by the previous discussion. The reason

is that the analysis of the previous discussion assumed that some amount of data would remain in

the cache across a number of uses. The problem is that even though the data that was assumed to

remain in the cache was smaller than the cache size, much of it nonetheless did not remain in the
cache between uses. We now consider the reasons for this cache behavior and consider methods for

improving it.

To understand the cause of interference in the cache, it is first important to understand how a
cache is built. Recall that the primary benefit of a cache is that the data cortained in it carn be
accessed extremely quickly. The cache must consequently be able to quickly determine whether it

contains a requested data item and if so where it is held. In order to keep caches fast, they must b,,

kept extremely simple. One of the most common means of designing a simple, fast cache is to build it

like a hash table, where a particular data location can only reside in one location in the cache Such
a design is called a direct-mapped cache. A slightly more complicated design, the seta.sSOCia i,,

CHAPTER 3. SEQUENTIA . SPA RSE (H()LESK Y .4AFORIZA I-ION

cache, maps a data location to some imal sei of cache locatiorts In ieither case ti, dtrii•itriati,,r -t

whether a data location is held in the cache is as simple as determining which ,ache- ,catui.'IN c,,u!d

contain that data location, and then determining whether tht- data item is indeed pr,-.•-it in mii I4

them The hash function, called an address mapping function. is rLy tally -xtrrrne1, siinpl.- al ril,'s

always using the address of the data itern niodulo somne power of two t,-, deterrijnn, the cacth- 1 .11

in which that data location would reside ('onputationall such .' mapping funct, ,, "rr,.-oo-

to the use of some number of low-order bits of the data address. ýIedng an ,'xtreriwh:' hwxi,,:.x s

function to compute.

One important consequence of such a cache design is that the amount of data that ,:n Mh,- ..I I

in the cache at one time is determined not only by the .,ize of the set of dat , hut als % IA wh-.th-r

each data item in the set maps to a different location in the cache If ainy two items map t,) ,he -ati1.

location (or any a + I items in a set-associative cache of degree a). then they displac, Pa,:h other

We now consider tiýe relevance of this fact to the blocking approaches that have been discussed -¾

far.

Both panel-blocking and square-blocking assume that some block of the matrix remains in the

cache across multiple uses. In the case of panel-blocking, the block that is ren ed and is as&sumd-d

to remain itn the cache correspond& to the non-zeroes from a panel, a set of aijacent columns whose

size is less than the size of the cache. One important property of a panel is that the non-z,-res

of its member columns are stored contiguously in memory. and thus cannot possible interfere with

each other in the cache. Contiguous data locations map to contiguous cache locations, making

interference impossible.

If we consider the case of square-blocking, we note that this approach assumes that a .quar,ý

sub-block whose size is less than the cache size remains in the cache However, in this cave. tihl

sub-block does not occupy a contiguous address range in memory. Whenever we advancte fr-mit

one column of the sub-block to the next. a jump in memory addresses occurs (Consequently i! i,

possible for one column to reside in the same cache locations a&s the previous column, or ,rd,,'ed

any other column of the block (we termed the resulting cache interference self-tnterfrrrinre in '26'

It is therefore extremely likely that a block whosse size is roughly equal the size of the cache will

experience self-interference. In fact, the impact of such self-interference is typically extremely larze

requiring a significant fraction of the block expected to remain the cache to be reloaded for each

use. This interference is responsible for the poor performance that we observed for the square-blo-k

approach.

The reused block is not the only data item that exppr.encps interference in the cache Aiotl,-r

form of interference, which we term cross- nterference. occurs wh-n the two vectors fotche, ftr ;I

single matrix-vector multiply interfere with the block or with each other Fortunately the inpallt -f

such cross-interference is much less severe Recall that during a single matrix-vector muhtplt !.- 1

data items that are touched are the entries from the block and the entries from a pair 4f -,ctrs In

CHAPTER 3. SEQUENTIAL SPA RSE (IIOLESKY 'fM('TORIZATION -3d

0

oM

32K

20 OAS IM 1.11

Cadcie fraction occupied by block

Figure 15: Cache miss behavior for multifrontal supernode-matrix method, using square blocks for
matrix BCSSTK15. Cache sizes 2K. NK, and 32K.

the case of square blocks, the block would contain C data items, where C is the size of the ,:ache.

while the vectors would each contain v(C7 data items. Recall that each matrix-vector rnultiply is

assumed to cache miss on the two vectors, resulting in 2vT cache misses- If the block interferes wit -h

itself, then the matrix-vector multiply could generate C cache misses instead. On the other hand

the increase in cache misses due to cross-interference from the two vectors is limited by the size

of the vectors themselves. Therefore, cross-interference increases cache misses by a small constant

factor.

An obvious solution to the problem of a reused block interfering with itself in the cache is to

choose a block size that is much smaller than the cache size, so that the cache mapping is not

as crucial. To determine an appropriate choice for the block size, we have considered a range 4f

different cache sizes, and a range of different block sizes for each cache size. The results ror matrix

BCSSTK15, using a direct-mapped cache, are shown in Figure 15. It is clear from the figure that the

optimal choice of block size uses only a small fraction of the cache. Indeed the optimal choice wit 1

respect to cache misses is most likely suboptimal for overall performance. For the case of a 32 KBN t,

data cache, the block size that minimizes cache misses is 16 by 16. In general. such a small hl,,k

size would certainly lead to decreased spatial locality on a machine with long cache lines. It wlold

also lead to small inner loops, potentially leading to increased time filling and draining pipelines :L-.

short vectors would lead to decreased performance on vector machines)

Another possible solution to the problemri of a reused block interfering with itself in the " ich, h

to copy the block to a contiguous data area, where it is certain not to interfere with itself 'I".

In effect, the cache is treated as a fast local memory. The data to be reused are explicitl. , .i-

CHAPTER 3 SEQUENTIAL SPARSE ('11OLESKT F4<'TORIZA HION

a

030

•" 0.0

0.30

0.A0 2K - Copid blocks S8K
:. 32K Uncopid blck•s

-0 .0 &40 80 eam In
Cache frfa-ton occupied by blc:k

Figure 16: Cache miss behavior for multifrontal supernode-matrix method. using square blocks and
copying, for matrix BCSSTK15.

into it before being used, The result of employing the copying optimization to the sparse problm

(BCSSTK 15) is shown in Figure 16- The solid curves in this figure show the cache miss rates for a
copying code. and the dotted lines show the miss rates for the previous uncopied code It ls clIar

from this figure that copying leads to a significant decrease in cache misses and allows for larger block
size choices. This data copying naturally has a cost, which we will investigate in the next subsection

While the cost is moderate, it is not completely negligible. We therefore briefly note that it may he

advantageous to work with both copied and uncopied blocks in the same code, switching betwe-n
them depending on whether or not a block would derive benefit from copying.

Before presenting performance results for square-block supernode-matrix approaches on cur
benchmark machines, we briefly consider the use of square blocks in supernode-supernode meth-
ods. We omit the implementation details, and simply mention that the identical consideratios.
including cache interference and block copying, apply. An important difference exists in the amount

of copying that must be done, however. Recall that the main difference between supernode-mat rix
and supernode-supernode methods is that in the former, a single supernode is used once to rnodif.

the entire matrix. Since each supernode is used only once, a code that copies blocks will copy ,ach

non-zero in the matrix at most once. In supernode-supernode methods, on the other hand. a

supernode is used to modify several other supernodes. Consequently, if non-zeroes are copied. then
the entries of a single supernode must be copied multiple times, once for each supernode-suprnol,.

operation in which they participate At this point, we simply note that the cost ,of data ,opy1u iý,
larger. The magnitude of this increase will be considered in the next subsection.

We now present performance numbers for square-block approaches to sparse factorizat ion (e ,r

CHAPTER 3. SEQUENTI4L SPARSE CEJOLESK Y F4CTOtPIZATION 5%

Table 23 Performance of square-block uncopied methods un DE(7station 3100 and IB.I RS/6iiOw
Model 320.

Left-looking Right-looking M ultifrontal
supernode-supernode supernode-matrix supernode-mnatrix

MFLOPS MFLOPS MFLOPS
Problem DEC IBM 1 DEC 1 IBM DEC IBM
LSHP3466 1.971 6.70 2.19 7 82 1 79: '7 6.1

BCSSTK14 2.74 11.94 2.76 12.30 2.38 1 11 62
GRIDI00 2.12 7.44 2.35 834 1.84 s 04

DENSE750 4.03 23.70 4.04 23.66 3.94 22 1.5

BCSSTK23 3.24 17.26 3.21 17.05 2.97 16.43
BCSSTKI5 3.43 18.46 3.38 18.33 7 3.17 1734
BCSSTKI8 2.86 14.20 2.90 14.41 2'54 14 39
BCSSTKI6 3.21 17 15 3.16.1 17.23 11 3,00 16.68

Means: T
Small 2.23 8.17 2.41 T 9.12 1.97 879
Large 3.15 16.40 3.13 16.48 2.88 16 03
Overall 2.80 12.30 2.90 13.07 2.54 12.61

two benchmark machines. We give performance figures for a square uncopied approach in Table 23.

and for a square copied approach in Table 24. These tables give performance numbers for the,

highest performance versions of each of the three factorization approaches. The block sizes on the

DECstation 3100 are 24 by 24 for the uncopied code and 64 by 64 for the copied code The be-k

sizes on the IBM RS/6000 are 24 by 24 for the uncopied code and 48 by 48 for the copied code The',,

block sizes empirically give the fewest cache misses on the caches of these machines. We show a

comparison of mean performances of square-block and panel-block schemes in Table 25. Surprisingt•

both the copied and the uncopied square-block methods are slower than the panel-blocked methods

on both machines. On the DECStation 3100, the square-block schemes are between 37 and 13:YIf

slower than the panel-blocked schemes. The left-looking supernode-supernode method with blhrk

copying yields the largest difference in performance. On the IBM RS/6000. the uncopied square-

block code is between 5% and 12% percent slower than the panel-blocked code. and the copiled

code is between 8% and 21% slower. Again, the left-looking supernode-supernode code with blck

copying shows the largest difference in performance. We now study the performance of square-blVck

methods in more detail in order to explain the performance on the two benchmark machines and

also to predict their performance on other machines and matrices.

3.5.3 Advantages and Disadvantage of Square-Block Methods

It is clear from the results presented so far in this section that square-block methods have 'Prt alli

advantages and certain disadvantages relative to panel-blocked methods. On the two benchmark mnii

chines, the disadvantages outweigh the advantages We now study where the performanc; ,itfereric>,

CHAPTER 3 SEQU'ENTIAL SPARSE CHOLESKY FACTORIZATION 5T

Table 24: Performance of square-block copied methods on DECstation 3100 and IBM RS/6000)
Model 320.

Left-looking Right-looking Multifrontal
supernode-supernode supernode-matrix supernode-matrix

MFLOPS M FLOPS MFLOPS
Problem DEC IBM DEC IBM DEC IBM
LSHP3466 1.74 5.69 2.01 6.94 1.61 6,98
BCSSTK14 2.46 10.74 2.59 11.71 2.23 11.18
GRID100 1.94 6.36 2.22 7.64 1.71 7.45
DENSE750 4.40 25.08 4.40 25.08 4.21 23.21
BCSSTK23 3.25 16.87 3.29 17.36 3.02 16.64
BCSSTK15 3,42 17.90 3.48 18.39 2.99 17-76
BCSSTK18 2.77 13.00 2.94 14.35 260 14.37
BCSSTK16 3.07 15.94 3.00 16.97 '2_9! 16.72

Means:
Small 2.00 7.04 2.25 8.32 1.81 8.18
Large 3.06 15.34 3.12 16.39 2.85 16.15
Overall 2.66 11.10 2.83 12.48 2.44 12.20

Table 25: Percentage of panel-blocked performance achieved with square-blocked codes, on DE('-

station 3100 and IBM RS/6000 Model 320.

SLeft-looking Right-looking Multifrontal
supernode-supernode supernode-matrix supernode-matrix

Method DEC IBM DEC IBM DEC IBM

Small:
Uncopied square blocks 86% 85% 90% 92% 92% 96-
Copied square blocks 77% 73% 84% 84% 84% 99,

Large:
Uncopied square blocks 95% 89% 95% 91% 99% 92%
Copied square blocks 92% 83% 95% 90% 98% 92%
Overall:

Uncopied square blocks 92% 88% 94% 93% 97% 1 95%
Copied square blocks 87% .. 79% 92% / 89% 93% 92%

CHAPTER 3. SEQUENTIAL SPAMRSE tIJ)LESKY "A('TORIZA.TION

between the approaches lie, and we consider their relative imiortantv

We begin by looking at the advantages of square-block approachws Recall that etia, M;1n NP,

tivation for considering square-block approaches was to improve- the cache performiaric- Cf spars,.

factorization on machines with small ca~hes. We now show the effects of using a square-block ap-

proach for a variety of cache sizes. We present cache mIss figures for supern,,e-supernode sitd

supernode-niatrix methods for matrix B(CSSTK15 in Figure 17. The first curves. in ,ach ,,fC t',

graphs are the cache miss figures for the patel-oriented methods These curves were '.-,ti i-i m

an earlier set of graphs. We have added cache mniss results for square-block approaches bt h wit h

and without copying. The square-block approaches use block sizes near the emnpirical oj,| 1iniains f,,r

reducing cache misses. The curves clearly show the advantages of a square-block approach Stirl) anl

approach generates many fewer misses than a panrel-blocked approach for small cache sizpes

Interestingly, the uncopied approach does not generate significantly more misss than thI, cop,,

approach, even though the uncopied approach uses much smaller blocks. The small size- of thI.

difference is especially surprising because we have observed factors of two or more redtuctiOns In 1,ns>

rate when using a copied approach to compute the update tnatrix front a single large supin le,

The main reason for the small difference is that much of the sparse conmputatioln dof's nlot n-mntail

significant reuse. The advantages of the copied approach are diluted by the inis.ses incurred in

operations that do not derive an advantage from copying. Another reason is that sutpernodes that

fit in the cache do not derive any cache benefit from copying. As the cache grows, tile numnber of

such supernodes increases.

To relate these numbers to the performance of our benchmark machines, we not-, that the redtc..

tions in miss rates for the square-block approaches on 32 KByte arid 64 KByte caches are mnoderat,.

Furthermore, the miss rates for the panel-blocked approach at these cache sizes are extremnek low.

meaning that the costs of cache misses are already a small fract ion of the overall cost of t he fact, ,r

ization. Square-block methods therefore provide only a small performance advantage dlit,' t, carla,-

misses for our benchmark machines.

We now turn our attention to the disadvantages of square-blocked approachies We first cnsabr

square copied block methods, where the most impartant disadv;,.' ge is the added c,,st of explicit o.
copying data to a separate data area. One observation to be made ;at this poilat is that this cpyimil.

is similar to the extra data movement that is done in the multifrontal methed, where suwperiwd,,

entries are added into the update matrix and their final values are later copied bach I rt fact. we,

found that the extra data movement in the multifrontal niethod result ed ii lower performance when

compared with methods that did not perform this extra data mnovement . The cp qing lheref, r,- has

some non-trivial cost, associated with it. In the case of su, perrle-supernde mitt hds. inre data

copying is performed. and the related costs will be even larger. lit order tc ,obtaii a r,,ugh idea 4f

how large these costs are, we pre'sent in Table 26 t.he percent imcreas- li ineemory r,'f,.rences cau iid

by the copying. These numbers show the increase iii tcotal references v•r the .littire- pr,,irain it

CHAPTER 3, SEQUENTIAL SPARSE CHOLESKY FACTORIZATION 6

U.S M el
- ~~S-Sp~~ q:,2 -. ~n~S-S. square uncopied blocks S S-S. square uncopied blocks

SS-S. square copied blOCks ~ A S-S. square copied block~s
*S-M. panels

*S-M, square uncopled blocks
440 4.1 S-M. square copied biocxs

04.3

*
SI@

qur

2 4 a If I Of 124 246 511Z4 4 1 n m 1
Cach se wo Kbyie) C4Ktw sizo 1.4le

Lsat-Ioolvng RlghitkbojwV

jo'sS-S. panels
o S-S. square uncopied bl~os
a S-S square copied blocks
a S-M, panels
G, S-M, square uncopied blocks

CGS- a S-M. square copied blocks

0.10

Muttorontla

- supernode. S-M is supernode- matrix.

CHAPTER 3. SEQUENTIAL SPARSE CHOLESKY FA(CTORIZATION

Table 26: Increase in memory references due to data copying

Supernode-matrmx Supernode-supernodeI
Problem increase ,increase

LSHP3466 5.57c 9.717c
BCSSTK14 5.27 9.8%
GRIDIO0 4.6 9O9%
DENSE750 2.07 2.0%,
BCSSTK23 2.3% 4.9%

BCSSTKI5 2.8% 5.5%
BCSSTKI8 2.69 8,4%]X
BCSSTKI6 3.53% 7.1 17

moving from a multifrontal method that does not copy to one that does. These numbers assumw

that supernodes containing a single column are not copied, since any sub-blocks of such supernodes

trivially can not interfere with themselves.

The numbers of Table 26 indicate that block copying incurs a moderate cost for the supernode-

matrix methods, and a larger cost (two to three times higher) for the supernode-supernode methods

Regarding the trends in the cost of data copying, we have noticed that the relative costs of copying

decrease as the size of the matrix increases.

Moving to the square uncopied approach, we note that the primary disadvantage of this ap-

proach comes from the smaller blocks that it must use. These smaller blocks increase the overheads

associated with performing block operations and thus lead to less efficient kernels. They also result

in higher miss rates than copied blocks.

The performance of square-block approaches on our benchmark machines can therefore he un-

derstood as follows. Square blocks decrease the cache miss rates slightly for our benchmark matrices

and benchmark machines. However, in the case of the copied approach, the benefits of this reducr-

tion in misses are offset by the cost of the copying. The left-looking supernode-supernode method

performs the most copying, and consequently it suffers the largest decrease in performance In the

case of the uncopied approach, the benefits of the reduction in misses are offset by the lncre;ats in

overhead associated with working with small blocks.

We therefore find that the square-block approaches offer no advantage for the machines and matri-

ces that we have considered. However, the reader should not conclude from this that such approache#'

have no advantages at all. Two important trends make it likely that square-block approaches will

provide significantly higher performance than panel-block approaches in the near future. First. we

expect that ever-increasing processor speeds, combined with ever-increasing memory densities, "ill

allow workstation-class machines to solve much larger problems than are solved today Secund w,.

expect small on-chip caches to become more common as processors become faster and thus requmr,.

faster access to cached data. These two important trends, larger problems and smaller ,in-,hip

CHAPTER 3. SEQUENTIAL SPARSE CHOLESKY FACTORIZATION t63l

caches, both contribute to a decrease in the number of columns that can be held in the cache, thus

making panel-oriented approaches much less effective at reducing cache miss rates than square-hlock

approaches.

3.6 Discussion

This section will briefly discuss a number of issues that have been brought up by this chapter

3.6.1 Square-Block Methods: Performance Improvement on Benchmark

Machines

We begin by briefly reconsidering the performance of ;quare-block approaches on our benchmark

machines. While the previous section showed that these methods do not improve performance for the

benchmark matrices that we have chosen, an unanswered question is whether they would improve

performance for any matrices. As it turns out, the answer depends on the relationship between the

size of the cache and the size of main memory. Cache reuse in a panel-blocked approach is limited
by the length of the longest column in the matrix. Let us consider how long this column can be.

Since we are interested in in-core factorizaton, we know that the matrix of interest must fit in main

memory. We also know that if a column has length 1, then the column produces an update matrix

of size 1(1 + 1)/2, and thus the matrix must be at least this large. Since this is a lower bound on

the space required, and a dense matrix achieves this lower bound, then the sparse matrix with the

longest columns that fits in a given amount of main memory is a dense matrix. If we consider our

DECstation 3100, which contains 64 KBytes of cache and 16 MBytes of main memory, a simple

calculation reveals that the largest dense matrix that fits in 16 MBytes is roughly 2000 by 2000

Since a 64 KByte cache fits 8192 entries, at least four columns from this dense matrix, and thus

from any matrix that fits in main memory, will fit in cache. Thus, any problem that fits in main

memory will achieve some degree of cache reuse on this machine.

If we consider the dense benchmark malrix (DENSE750), we note that at least 10 columns of

this matrix fit in a 64K cache, and thus a panel-blocked method would use panels of that size.

On the DECstation 3100, a panel-blocked method factored DENSE750 at a rate of 3.8 MFLOPS

The uncopied square-block method used a block size of 24, which would be expected to slightly

increase reuse. Indeed, the uncopied method factored the matrix at roughly 4.0 MFLOPS. The

copied square-block method, with a block of size 64, significantly increases the amount of reuse and

factors the matrix at a rate of 4.4 MFLOPS, or 16% faster.

A dense matrix provides only a lower bound on the number of columns that fit in the cache A

truly sparse matrix would have much shorter columns, so we would expect more reuse. For exanpi.,
the largest 5-point square grid problem that fits in 16 MBytes of memory is roughly 220 by 220)

The longest column in this matrix contains 330 entries, meaning that at least 2,1 columns w(,ult

CHAPTER 3. SEQUENTIAL SPARSE CHOLESKY FACTORIZATION 64

fit in the DECstation 3100 cache. Thus. for a machine with 64 K3ytes of cache and 16.MBytes

of memory, we would expect a sparse matrix that fits in main memory to achieve significant data

reuse using a panel-blocked algorithm. Of course, a general-purpose factorization wethod should not

make assumptions about the relative sizes of cache and main memory We are simply explaining the

reasons for the lack of observed improvement, and pointing out that we would need a much larger

problem and much more memory to realize significant benefits from a square-block approach on a

machine with such a large cache.

3.6.2 Improving Multifrontal Performance

Another question that we now consider is whether the performance disadvantage that the multi-

frontal method suffers relative to the other methods due to extra aata movement can be overcome

Much of this extra data movement is caused by the absence of a special case for handling supern-

odes that contain a single column, The problem of dealing with small supernodes in the multifrontal

method has been recognized in the context of vector supercomputers. One solution that has been

investigated is supernode amalgamation [10, 17], where supernodes with similar structure are merged

together to form larger supernodes. The cost of such merging is the introduction of extra non-?eroes

and extra floating-point operations. The merging is done selectively, so that the costs associated

with combining two supernodes are less than benefits derived from creating larger supernodes. Our

observations about the lower performance of the multifrontal method on our benchmark machines

indicate that amalgamation techniques have a role in sparse factorization on workstation-class ma-

chines as well. Note. howevw., that the potential benefits of amalgamation are not specific to th,,

multifrontal method. The performance of the left-looking and right-looking approaches also suffers

somewhat due to the existence of small supernodes. We will discuss amalgamation in more detail in

later chapters. For now, we simply note that we have found that when amalgamation is performed

on the matrix before the factorization, the performance gap between the multifrontal method and

the other two methods is narrowed somewhat.

Another approach to improving the performance of the multifrontal method would be to use a

hybrid method, as suggested in [31]. Normally, the multifrontal method traverses the eliminatoli

tree all the way down to the leaves. Briefly, a multifrontal hybrid uses a multifrontal approach a,,•o,

certain nodes in the elimination tree and an approach that is more efficient for small problems fr

the subtrees below those certain nodes. The selection of the nodes at which the hybrid meth i,

would switch approaches would depend on the relative strengths and weaknesses of the two blend-,I

approaches of the hybrid.

3.6.3 Choice of Primitives

Our study has considered a range of methods for facioring sparse tiatrices. including; a niumhr ''I

methods that are• obviously non-optiial W,' have included surh muiethods f ,r a niizilhr ,4 r,'.i-1,,

CHAPTER 3. SEQUENTIAL SPARSE CHOLESKY FACTORIZATION 65

The first is to obtain a better understanding of the benefits obtained by moving from one approach

to another. In general, the methods based on higher-level primitives are much more complicated to

implement. In particular, unrolling and blocking are quite tedious and time-consuming. We wanted

to understand how much benefit was derived by expending the effort required to implement them

Also. through a gradual transition from relatively inefficient methods to efficient methods, we were

able to obtain an understanding of where the important sources performance improvement were

Another reason for considering factorization primitives that are inefficient on hierarchical-memory

machines is that parallel factorization methods are typically implemented in terms of them. One

reason has simply been that few distributed-hierarchical-memory multiprocessors have been available

in the past. Another reason is that primitives expressed in terms of larger structures in the sparse

matrix limit the amount of available concurrency. We will return to this issue later in this thesis

3.6.4 Performance Robustness

Our final point of discussion relates to the performance robustness of the methods that we have
considered. While the relative performance levels of the fastest methods have been quite consistent

across the different benchmark matrices on the machines that we have considered, it is quite possible

that the methods have important weak points that were not brought out in the benchmark set.

The first thing to note when considering the robustness of factorization methods is that cache

miss rates can play an important role in determining performance. We therefore conclude that
panel-blocked approaches are not robust. They generate significantly higher miss rates than square-

blocked methods for large problems or small caches, thus potentially resulting in significantly lower

performance. A robust general-purpose code would employ square-blocking. A similar but less

important consideration is whether blocks should be copied. A copied code gives lower miss rates for

small caches, but it also gives lower performance for small problems due to the cost of performing

the actual copying. As was mentioned in this chapter, a reasonable alternative is to use both

approaches within the same code, switching between them on a per-supernode basis, depending on

whether copying would provide significant cache miss benefits for the current supernode.

Given the above considerations, we now consider the robustness of each method. Beginning with
the left-looking supernode-supernode method, we note that this method contains a certain degrpe

of unpredictability. When supernodes are copied, this method must perform more copying than

the supernode-matrix methods. While the increase for the benchmark matrices we considered was

moderate, there is no guarantee that it will always be moderate. We can invent sparse matrices

where supernode copying happens much more frequently.

The right-looking supernode-matrix method also contains some degree of uncertainty This

method must compute relative indices using an expensive search. While this search occurs extre,,ely

infrequently for the benchmark matrices that we have considered, again there is no guarantee that

it will not occur much more frequently for other matrices. Also, the search code is likely to , con,,'

CttAPTER 3. SEQUENTIAL SPARSE ('HOLESKY Mi:.Y'TORIZATION 1:6

even more expensive in the future, as the aniount of instruction parallelismt that prit ,ýssi,r• can

exploit increases.

The multifrontal method provides the most robust performance aniong the tihroe, approachles

The cost of copying data in a copied square-block approach is guaranteed to be iiod,'rat,., s11c,0

each matrix entry is copied at most once. The cost of computing relative indices is also mnodrat,-,

since they are computed once per supernode. The performance of the inulitifronital inethod ,,ir

benchmark inachines was observed to be slightly lower than that of the other iinethods. utI ith

difference was small. The multifrontal method contains somne unpredictability. but it ir not in I lie

performance. Instead, the unpredictability is in the amount of space required to factr a miatrix.

since the size of the update matrix stack can vary widely.

3.7 Related Work and Contributions

An enormous amount of work has been done in the past on the problem of performiig spar-.

('holesky factorization efficiently. We now briefly comment on the contributions the work describ.d

in this chapter have made to the sparse Cho~esky factorization literature.

The focus of our work in this chapter has of course been on maximizing the perforiiaic, 4f

sparse factorization on workstation-class, and on understanding the issues that are most important

for obtaining high performance. Virtually all previous work that considered performance issue's

for sparse factorization either considered performance on vector supercomputers or it considered

performance on workstation-class machines using column-oriented methods. Indeed, we believe it

is fair to say that the common belief was that workstation-class machines were inherently a low-

performance platform. and as such provided few opportunities for performance improvement. Indeed.
column-oriented methods are still the most commonly used inethods on workstation-class niachiris.

Our work has made it clear that substantial performance improvements over these earlier etielhods

are possible, that workstation-class machines are indeed a high-performance platform ftor sparse

factorization, and it has described simple techniques that provide high perfirrmance on this class of

machines.

We should note that sorne previous work on tle multifrontal method [1] had considered ,,rfier-

mance on, a machine with a iuemory hierarchy. Bly expressing frontal update matrix coniput altoll

in terms of dense mnatrix operations, this work was able to block tlie computation for a tuet•ry

hierarchy, Results were presented for an Alliant FX/S vector inini-supercomputer with a one- lvi-l

cache. However. this earlier work provided no context for interpreting the results, It wa. rio t clear

whether the resulting performance was significantly higher than the performance, that wotuld lihavt

been obtained with a traditional column iethod. It. was also tot clear whet her th, use of ;I tiii1i-

frontal frairework was essential for obtaining ,ood perfotrmance II ,, r stidy. b by h,kini at sever;a

CHAPTER 3. SEQUENTIAL SPARSE CHOLESKY FACTORIZATION 6 7

methods in a consistent framework we were able to isolate and quantify the magnitudes of I he per-

formance improvements that came from virtually all of the important design choices in a sparso

factorization method.

Another important contribution of our work comes from our investigation of the effects of realistic
caches. We showed that a panel-blocked approach, although conceptually appealing, has important

limitations for large sparse problems. We showed that the alternative, a square-blocked approach.

has limitations as well related to cache interference. We described the steps that are necessary to

get around these limitations, namely block copying, and considered the complexity of these steps

Finally, we considered the effects of cache line size and cache set associativity on overall cachl

performance for the various methods.

3.8 Conclusions

An obvious end goal of a study like the one performed in this chapter is to arrive at a particular
choice of method that yields consistently higher performance than the other choices. Unfortunately.

no factorization method fit this description. Instead, a number of methods achieved roughly the
same levels of performance, each with its own advantages and disadvantages. A less ambitious goal

for a general-purpose factorization method is that it provide robust levels of performance. near the

best performance of all other methods in almost all cases. From our discussion, it is clear that the

multifrontal method best fits this description, although this method has the disadvantages that it

performs more data movement than other methods, it is more complicated to implement. and its

storage requirements are larger and less predictable.
T' primary conclusions we draw from this chapter relate less to which method is best overall

and more to what is required to achieve high performance with a sparse Cholesky factorization

implementation. Our conclusions are: (1) primitives that manipulate large structures are important

for achieving high performance on hierarchical-memory machines: (2) the choice of left-looking.

right-looking, or multifrontal approaches is less important than the choice of the set of primitilves

on which to base them.

Chapter 4

Evaluation Environment for

Multiprocessors

4.1 Introduction

Having established in the previous chapter that reusing data is crucial for achieving good perforniancr,

from sequential machines with hierarchical memory organizations, we now turn our attention toi

parallel machines with similar memory system organizations. Before looking at specific algorithms.

we first provide a detailed description of the machine environment in which our parallel method

evaluations will be performed.

The parallel performance numbers we present will come from two parallel environments. The first

is the Stanford DASH multiprocessor [27, 28], a single-address-space distributed-memory machine

currently being built at Stanford. This chapter briefly describes the organization of this machine.
including a discussion of the specific costs of the machine operations that will be important for

parallel factorization. To obtain a better understanding of the performance of this and other real

parallel machines, we also consider performance on a simulated parallel machine. This chapter will

describe our simulation model, including a discussion of the factors we believe are most important

in determining parallel machine performance and a discussion of the specific performance models we

use to capture these factors.

4.2 The Stanford DASH multiprocessor

An important part of investigating the performance of a parallel algorithm is naturally to look at

performance on a real parallel machine. This thesis presents performance numbers from the Stanf,,rd

DASH rrtultiprocessor, a 48 processor (currently) machine designed at Stanford. The most Inter,.;t Ing

68~

('HA PTFH 4 EVAL 'AVhN ENVIRONMENTIFO)I Awi.r LIRo('Er ;UHN

aspect uf this machine for our purpo.-ses, is it, nrnomrv -Astern 1organizat ten Memrit r i-.ph

distributed among the processors, :tAh each pr~ce*,ssor coOntam tog sopi;orltion of thr gI' al

memory (see Figure 2 in Chapter I The niari tachm p roy Ides a sige drs-saeshare i riie~ri

programmlingimodel. w here any processor ran wccess an% frieniory lojcat ion in the iiie niachill %%I hI

an ordinary load instruction The c-ost of such a load naturally depends on the ph~ sircl liattii to

the requested memory block

'The machine is organized as a -;ot of cluster.,. w here e-ach cluster contains 4 pncs sand o

portion of global main mnem-ory Each processor is a highi-perfirrniace NilP'S Rjtitoii) nt-e-r 11iiW :ol'i

an R3010) floating-point co-processor Each prrcýs~sor has a 64I K E3~te instructitan cache .t 6-1 Kl.i

first-level data cache and a '256 K Byte stcond-level dlata cache. All are direct-ni-api eli the h--

can cache any memory location from the global shared memory The prceessors oxecute, at 3:" MI 1z

and are rated at 27 MIPS and .1.9 double- precision UINPACK MF[.OP)fS

Processors are connected to each othor at two.- different levels. The four prrce~strs within

cluster are connected with a bus having a peak throughput of approximately 67 MlBytes per secrowi

The connection between clusters uses a two-dimensional mesh interconnection network, and the.

iiterconnect provides a peak point-to-point bandwidth of roughly 60i NBytes per secofnd

As mentioned earlier, the cost of a meiemory reference on the [DASHI machiine 4depends rcmth

physical position of the referenced memnory location. If the location is available in the- cache of the

requesting p-,ozessor. then the reference is serviced in a single cycle. If the location resides in the

portion of memory that is local to the requesting processor. then the reference requires roughl, 3:i

cycles and brings a 16-byte memnory block into the cache. If the location resides in a nori-lo.cal clust-r

the request requires roughly 100 cycles and it again brings a 16-byte. block into the cache Note, that

in both cases the processors sits idl- wvhile the memory request is serviced. Other relevant costs' fr
the DASH machine are the cost of a floating-po .int multiply '5 cyls1n laigpit d

cycles). From these numbers, it is clear that rneniory reference costs play an extremnely imp ;rr ant0

role in determining the performance of a paralle program To achieve mnaxinium pei~formratrtc.

programs shotild b- written to r~use data in the processor cache as much as possible WIfenici.

misses occur, those misses should ideally be serviced from the memory thpt is local to, the proccýss'r

that issued the request.

We should note tliat although the [DASHl machine, provides a shared- memory programminng min le

our implei,--ntations will make little use of this feature Al! import ant factorization data itemns twich

as the cr~urnns of the matrj-x) will be explicitly placed in the local memnories oif 'heir respect iv, ' ,~wtil

proces~sors. Furthermore, nearly all processor memiory references that. access non-local dat~a will d-

so in order to copy blocks of dlata (messages) from the local inemniory of some seiiding procress-r 111t

the local rnemory of theý r-questing processor. 'The only sit uations where we actually miakfe w, -

the shared memory feature are for shared variables that are accessed sutfiriently infr. of-ientk0v

the!. placemnent has, no significant effect. on performantce (Ifor examiple . the originaia .-i iatrix

CHAPTER 4 EVA L UATION ENVIRONMEYT FOR MULTIPRO(TESqSORS 7!

4.3 Performance Model

While it is important to look at algorithm perforriance -n real paralMl marhi,',n retl A 1t,i,,_

also have a number of drawbacks. For one. t hey do not prov ide detaile,i pe,.rf,)ro iim,, nf,.,r ti, r

They tell the user what level of performance is achieved, hut they prov ide ittl,- enfrmrti,,t, i

allow the user to understand why this level is achieved Real mnachines also d,, not allw iii•, hail,-

parameters to be changed. A study of the effect of an Increase n thei c,'st of a ctch, isw f,,r

example. would be difficult or impossible. Any real machine will also contain son,,, nw-iiwi'

performance quirks, coming either from unusual features of the machine or alternariiv-l> fr,,m d,-',li

compromises. Without the ability to abstract these quirks away the ,mplenwentor max " airi i,

designing parallel algorithms that specifically address these quirks instead of addressing t,,re 4eti,-r:0i

and more fundamental bottlenecks in parallel machines.

An alternative to real machines that is often used in computer architecture studies is d,'taal'

multiprocessor simulation, where each instruction executed by each processor in the simulated Ia-

chine is emulated, and the effect of that instruction on all other processors is computed While -nit

an approach addresses all the problems with real machines discussed above, it also po,,ssesses a -ri-

cial weakness. Such simulations typically require between one thousand and one hundred thousand

times the runtime of the machine they are simulating to run the same program (',mputer ar.-mp th

tecture studies that use such simulation understandably study small programs Our intvrst i,-re

on factoring relatively large matrices. The resulting simulation costs would simrpl be prohiltai\,

The approach we take instead is to use coarse multiprocessor simulation. where thew pirai-i

factorization is expressed in terms of high-level operations (e.g. the modification of ýnr uip,-rn 1,,l

by another, or the transmission of a supernode between two processors). ' he simulator 'rurtH !-r

a runtime cost for these high-level operations based on a performance model that w, will ,ts"-

shortly. The parallel computation is simulated using a discrete-event simulation of th,.se hi-,

tasks.

Our goal when modelling the parallel factorization is to capture only the most Important fact r-

that affect parallel performance. To this end, we only model two costs The first ii th ch1, t ,O.f

executing a task, which we model in terms of the number of floating-point operations perfornwd.,

the task and the number of data items that the task fetches from mnemory The seo(,nd a> lh-

of moving data between processors, which we model in terms of the size of the -hunk -f data I.

moved and the communication bandwidth available between the source and destinatio.n pres,,r-

Note that our goal in this performance model is riot to exactly model the Stanford [)ASH machaa

We instead want to devise a general performance model that captures aspecwt. that are, expvctted

be common to a variety of parallel machines and critical to determining parallel perfornian',,

use the Stanford DASH machine to estirate relevant parameters for thew rirdel. but w-, . .

so that these parameter choices represent realistic, achievable values

CHAPTER 4 EVALV'ATION ENVItO()NME. T FOR MULTIPRO(I'SSORS. 71

4.3.1 Computation Costs

,•e model the cost of executing a factorization task in terrms of two quarntities (•, th• .-.ý,

eoxecuting the machine instructions necessary to perform one floating-.point operation. and Ml iiý

cost of loading one double-precision word of data from local memory [he cost of the wh ,lo,, r k .'

simply the sum of the floating-point operation and data fetch costs The 0) term. is no-anlt t rpjlt r.

not only the cost of the single instruction that performs th, actual tloating-point ,prat ,h tio

also the costs of any supporting integer operations, such as address calculations or 1)op It inst ro, i I1-

Regarding the values we assign to O and V. we note that a floating-point multiply-add pair ,,n

DASH protessor requires roughly 7 machine instruction cycles. A cache miss ,in a l-b, ,,

requires 30 cycles and fetches two double-precision items. giving a ratio of 4 3 l,.w-teen .1! arid (

For the sake of normalization, we define the cost 0 to be equal one unit and thus Ali€ is equal .1 4,

We note that this ratio is quite close to the numbers we have calculated for a range ,tfther curr,-ui

hierarchical-memory processors. For example. similar calculations for the Hewlett Packard H11|'/iti4

Model 720. the IBM RS/6000 Model 320. and the [ntel iPSC/860 machines give rattios of r,,ughlý

4.6, 2.4, and 2-6, respectively. We use the value At = 41. throughout this thesis

Note that this computation cost model makes several simplifying assumptions Probably the

most obvious is the assumption that the processor blocks when a cache miss is serviced While this

is an accurate assumption for today's processors. future processors may be built with the abiht? t-

hide some of the latency of a cache miss by overlapping this latency with computation It i.- ,ur

belief that such latency hiding will have only limited success We expect that the ratio of memor.y

reference latencies to floating-point operation costs will continue to increase in the future as it has-

in the past. so while it may become easier to hide latencies there will also be mnore latencies to hid,

Thus we believe it is reasonable to assume that the processor will have to pay some cost for ,a-h

cache miss.

We should also note that we are not claiming that it is impossible to build a memory svssttr

that can keep up with the memory fetch requests of a high-speed processor Indeed, todays %,,, v r

supen•tumputer m, .ory systems could certainly fill the need Our claim is siniplh that such iri-nir.

systems will be much more expensive and consequently much less common than mernor. >vs.ý -

that rely on low cache miss rates to achieve good performance.

4.3.2 Cache Miss Counts

Our task cost model has so far been expressed as a simple function of the floating-point ,iierat i,,-

and cache misses required by the task. While it is trivial to predict the number of floating-p. ir

operations a task will require, predicting cache misses is significantly more difficult This oiir

depends),. a variety .Jf factors, including the size of the cache, the amount, of data that is actiall.\

being reused, the cache line size and set associativity. and the way in which the reused data nvi,-

into the cache. Again. we attempt to keep our model as simple as possible by considering ,idv tito

CHAPTER4. EVCALUL ATION EN'VI'RON,\IEN TH())R MI'1lTUIR()'FS'OR.kS7

most important factors.

To illustrate our assumptions. let us consider th,, most Imrportant operation in sparse fact,,riz-

tion. the modification of one supernode by another 'This operatin nvol,.,s a s(.,urr, i,,r,, -,

and a destination supernode ,. with potentially dfifferent non-zeri structures Assume that ", -ij.

tains s columns, and assume that d columns in .S are, affected by the modlicatini Recall that !t,,

modification operation is performed in two steps. In the tirst. the update from .5, to ,;> is cimputet

Using dense matrix operations Iln the second, the resulting update is added inw- h- appr ,pria',+

locations in S. using information about how the source and destination non-zero struct ures rlat,.

The computation of the update to 5 ;, is performed as a dense matrix multiplication The tirst

matrix, call it X. contains the non-zeroes of S, at or below the diagonal block of SN. This is ali :.

dense matrix, where I is the number of non-zeros in a column of S, below the destination diag,,nal

The second matrix. Y. is the transpose of the block of non-zeroes in .5, that are adjacent to the

diagonal block of S3 . This is an s x d dense matrix. The resulting Z matrix, an I x d dense riatrix
is the update that is to be added into S,

We assume that the update computation interacts with a memory hierarchy in the following waý

We assume that the Y matrix, of size s x d. is loaded into the cache once The X matrix is then read

a row at a time, with that row being multiplied by Y to produce a row of Z Thus, the X and Z

matrices are each read from memory only once As a result. the operation generates sd cache misses

on Y, sl misses on X, and dl misses on Z. During this computation, 2sdl floating-point operatjons

are performed. A common case that merits special attention is the case where both the source and

destination contain the same number of columns (s = d = B). In this case, 2B 2 1 operations ar,'

performed and 2BI+ B2 ý. 2BI misses are generated. giving a ratio of I miss for every 8 operati,,ns

In order to be able to conveniently discuss the costs of such operations, we define a quantity T+,x Ili,

to be the average cost of a floating-point operation when performing an update operation for which

the source and destination both contain B columns. Given this definition, we have

To,,(B) = 0 + MIB.

We should note that our description of the cache behavior of a supernode update cotnputatim

is somewhat oversimplified. In particular, due to stride-of-access issues the update operation mnaN

not be coded in terms of rows of X pioducing rows of Z We have also ignored issues of cach,

line size, set associativity, and cache interference. We believe, however, that careful coding of th,
matrix-multiply operation. including the use of data copying to avoid interference, would give results-

that are quite close to those predicted above.

From the cache miss rates above, it is clear that the benefits of large supernodes grow with the

sizes of the supernodes. The benefits do not grow without bound, however. They are limtited b,. the

fact that the s x d matrix Y must remain in the cache across multiple uses. The maximum berntfit

is therefore determined by tire size of the cache. To eliminate the need to include the machill cachel

size as a parameter in our model, we assume that. some roasonably large block size is good enmigh

CHAPTER 4. EVALIU'ATION ENVIRONMENT FOR Mt1' TIPRO 'ESSORS 7:3

to reduce cache miss costs to a negligible level while at the same time being small enough tm tit in

any reasonable processor cache. A block size of 32 fit, these requirements ,u1to well A c,)de that

produces one cache miss for every 32 floating-point operations will generdly b,- narl as•OF,

as a code that produces no misses at all. The 32 by :32 block that must remain in the cache require-

8K of,.orage. which would fit in virtually any cache. Note that update operations that irivI, ets

of more than 32 columns can be handled quite easily by breaking them up into 32 corlumn 'hunks.

The other important part of the update computation is the addition of the update into, the,

destination. We assume that for each entry in the update, the processor miust fetch that -ntry plus,

one entry in the destination from memory. In other words, we assume that nothing is availabl,.

from the cache. The reader may object that the update would be available in the cache since it was

computed soon before, but our assumption is that the update is generally larger than the cache and

thus does not remain there.

This thesis will use this performance model to simulate a variety of matrix operations not all ,I

which are directly related to the two steps of the supernode modification operation discussed aboe%,

Rather than explicitly enumerating the operations that we model and the costs we assign to therri

we instead simply note that we use the same framework. where blocks are loaded into the Cache and

reused several times when possible, for all such operations. The majority of these operations are

based on dense matrix-matrix multiplication, which lead to identical formulations Howe%er -veu

the ones that are not still have very natural block interpretations.

To validate the use of this performance model, subsequent chapters will compare the predicted

performance with actual performance on the DAS1H machine. Although the performance mi•odel .

not meant to model the DASH machine exactly, we will see that the two actually produce quit,

similar results.

4.3.3 Communication Costs

The other important part of our performance model is interprocessor communication Our mn-del

assumes that communication takes places in the form of 'messages'. We assume the time requir,ed

for a message to move from its source to its destination is:

a + 3L

where a is the fixed cost of sending a message. 3 is the additional cost of each word of data m th,

message, and L is the length of the message. The quantity o is a measure of the overhead associated

with a message, while 3 is a measure of the bandwidth of the interconnection network

To obtain values for co and 3. let us consider the Stanford DASH machine This machine -al

move a 16-byte cache line of data (two words) between two different clusters In 100 rycles It can

pert'orm a multiply-add in roughly 7 cycles, giving a 3 of 100/7 = 14 To obtain an estiiiate f,,r k

the fixed cost of initiating a message, we assume that the machine uses a software mPssage scheIii

CHA PTER 4. E1A L [VATION ENVIRONME,''T F(OR M !'L IP'l'RO ESSORS 71

To initiate a nkessage transfer. the source processor would enqueue some iidicator t-hat ; ,-lv.. e

is available in the input queue for the destination processor. The destination would then ha~e r,.

dequeue it before initiating the transfer We Assume that this exchange requires r, ghly 10lJo c.t-'-

giving an a of roughly 300

Note that our estimate for 3 is somewhat pessimistic in the context of more general parallel

machines, especially those with special-purpose hardware for handling messages tand .en f,,r 04,-

DASH architecture, as we will explain shortly) Our estimate abovet assurnes that a block is v,-,

one cache line at a time between processors- a more specialized message passing system would '-ivd

the block in a more pipelined fashion.

Let us consider briefly where both 3 and a lie for parallel machines with more specialized ,rws.•;,g-

passing support. One example. the Intel Touchstone DELTA multiprocessor, achieves around .ii

double-precision MFLOPS per processor on programs that generate few cache misses It provides

around 25 MBytes per second of interprocessor communication bandwidth. Thus it perf0oTms a

floating-point operation in roughly 25 nanoseconds and it can transfer an 8-byte word of data between

processors in 320 nanoseconds, giving a 3 of 13. The fixed cost of sending a niessage is roughly 160

microseconds [46], giving an a of 6500. (Note that we are assuming contention-free messages to,

compute 3 here. We will discuss how we handle contention shortly) The newer Intel Paragon

machine provides roughly W0 MFLOPS per processor and 2W MBytes per second of bandwidth

giving a 3 of around 2. The fixed cost of a message is roughly 30 microseconds, giving an (I of l5001

The Thinking Machines CM-5. on the other hand. provides 128 MFLOPS per processing node and

20 MBytes per second of communication bandwidth, giving a 3 of arcund 50 The fixed cost of

sending a message is roughly 86 microseconds, giving an ck of roughly 11000. In our performaroe

model, we use aggressive values of a = 500 and 3 = 10, since the trend in both of these is ,d.eciel%

downward.

Another important aspect of our communication model is that it assumes that the cosl of ,1

message is a latency cost only. Neither the source nor the destination processor sits idle when

a message is being transferred. The source simply indicates that a message should be sent and

continues on with other work. At some later time, determined by the latency model described

above, the destination processor is notified that the message has arrived This assumption is ruearit

to account for the fact that most distributed-memory machines contain message coprocessors that

handle the mechanics of moving the message. Note that the DASH machine, as described, does 't

fit this model. The destination processor must wait while 16-byte pieces of the message are moved

The DASH architecture does have the ability to hide the cost of sending a message from the involve.d

processors through the use of a ron-blocking prefetch instruction [35]. The actual DASH machin-

is unable to achieve the full benefits of this provision, h,)wever, due to limitations in the processstr,

from which the DASH machine was built.

A final aspect of our communication model addresses the issue of contention in the interct.nnct in

CHAPTER 4. EVAL UATION ENVIRONMENT FOR MI'I TIPROCESSORS 7)

Table 27 Benchmark matrices
Name Description __Equations_ Non-zer..

I. GRID100 5-point discretization of rectangular region o1.000 ' 1;9 bol)

2 GRID200 5-point discretization of rectangular region 40 000 159,20()
3. BCSSTK15 Module of an Offshore Platform 3,94 i 1l3.•6•
4. BCSSTK16 Corps of Engineers Dam 4,8S4 2?5.491
5. BCSSTK17 Corps of Engineers Dam 10.974 1 .T17.676
6. BCSSTK18 Nuclear Power Station . 11.94m 1371 1-42
j7 BCSSTK29 Nuclear Power Station 13,992 6 0i).:4;

Table 28: Benchmark matrix statistics

Floating-point Non-zeroes
Name operations in factor

1. GRIDI00 15,707,205 250,835
2. GRID200 137.480.1831 1,280.743
6. BCSSTK15 165.039,042 647,274
8. BCSSTK16 149,105,832 736,294
8. BCSSTK17 144.280.005 994.885
7. BCSSTKI8 140,919,771 650.777

BCSSTK29 393U059,150 1,680,804

network. We have so far assumed that thf message transfer time depends only on communicatwi,

bandwidth. Realistically, however, this time will also depend on the amount of traffic that is globail,

placed on the interconnect by all processors. A saturated interconnect will clearly delay niessag,,s

Rather than attempting to incorporate some notion of interconnect contention into cour Iateic%

model, we will instead took at bandwidth demands independently. The runtime of a computati.'n

will be computed using strictly contention-less latency estimates, and the bandwidth demands if

that computation will then be examined to determine whether the assumption that communicaiji

was effectively contention-free was realistic.

4.4 Benchmark Matrices

We will use a somewhat different set of benchmarks to evaluate parallel factorization methods The

matrices in this new set are described in Table 27 and Table 28 The primary difference between

this set and the previous one is that we have removed some of the smaller matrices and added a few

larger ones. Our assumption is that parallel machines will generally be used to solve larger matric,,s

46

Chapter 5

Parallel Panel Methods

This chapter will consider efficient sparse ('holesky factorization on parallel machines with hierar-

chical memory systems. We have two primary objectives in this chapter The first is to describe a

parallel method that makes good use of a memory hierarchy. and the second is to investigate and

understand the performance of this parallel method.

Several methods have been proposed for performing sparse factorization on parallel distributed

memory machines. including the fan-out method [221, the fan-in method [81. and the multifrontal

method [9, 34). These approaches all distribute the computation by assigning columns of the matrix

to processors. Unfortunately, the computational primitive for a column-wise distribution is a colurn-

column modification, an operation that gives poor data reuse and low performance on machlne-'

with hierarchical memory systems. The parallel factorization approach we consider in this chapter

is a straightforward extension of a column-oriented approach. Rather than distributing colurrmns

among processors, our approach instead distributes sets of adjacent columns from within the same

supernode. which we call panels. By working with sets of columns, a panel method can obtain

many of the same benefits that were obtained earlier through the use of supernodes in sequentiai

factorization- While panels can be integrated into fan-out, fan-in, and multifrontal methods W',e

will only study a multifrontal panel method, The multifrontal method is generally considered ! 0

give higher performance than the other two parallel methods [9]. As confirmation, we note that ,,11r

panel multifrontal implementation provides higher performance than our panel fan-out arid fan-In

implementations.

To clear up a potential source of confusion, we note that the panels we use in this chapter

differ somewhat from those of Chapter 3. Previously, the term panel referred to a contiguous set (f

columns that fit in the processor cache. Here, a panel is any set contiguous set of columns It cal

be larger than the cache.

We begin this chapter with a brief description of the process of parallel sparse factorizatit)n

including a description of the parallel multifrontal method and a description of our panel extenSlwin

76

CHAPTER 5. PARALLEL PANEL METHODS 77

to this method. We then present performance results from our parallel panel multifrontal imple-

mentation. The results indicate that panels are a valuable addition to a parallel method, giving

two- to three-fold performance improvements over column approaches. However, the results are al.-,

somewhat disappointing in that parallel speedups are well below linear over a supernodal s,-quenttal

code.

We then turn our attention to obtaining an understanding of the achieved performance Several

factors that influence performance are described, and the impact of each of these factors on oo,#,rall

performance is investigated. We find that the main factor that limits parallel performance is the

dearth of concurrency available in the sparse problems we consider- and indeed in urtuallN all

sparse problems. This lack of concurrency is found to be quite constraining for moderately parall.'

machines. Furthermore, we find that concurrency grows extremely slowly with the problem size As a

result, large parallel machines would require enormous problems to achieve reasonable performance

We also find that while concurrency is the most severe limiting factor for performance. it is nri-

the only factor. Communication costs, load imbalance, and task scheduling are also found to play

important roles. We briefly consider ways to alleviate some of these factors, but conclude that

in the absence of significantly higher concurrency any such approaches would lead to only minor

performance improvements.

Finally, we use this understanding of achieved parallel performance to investigate the important

question of how to choose panel sizes so as to maximize performance. The most important factors

that must be traded off are the data reuse benefits that result from larger panels and the loss ,4

concurrency that comes with these larger panels We describe a simple method for deternuning a

reasonable choice that balances these two considerations. We then discuss related work, and finallv

we present conclusions.

5.1 The Panel Multifrontal Method

Let us begin by describing the parallel panel multifrontal method. We start by describing the,

column-oriented multifrontal method and later discuss the modifications necessary to perform th,

computation using panels.

5.1.1 General Structure

The parallel multifrontal method is perhaps best explained using the domain/separator model '4

sparse factorization [9]. We use a simple 2-D grid problem (Figure 18) as our example The clumi-

ination tree play an important role in parallel factorization. so we include the elimination tree ,,f

the example matrix in the figure. This subsection will present a very high-level descriptiom ,f th,"

parallel factorization process, with more specific details to follow in the next subs'ction

CHAPTER 5. PARALLEL PANEL METHODS

D3 So D5

so*

SI 52i q
- . . . ! :F- ... - Si _::52-$1~~~S S2... , ": $

T -

D4 D6

Figure 18: A simple grid example.

The process of factoring a sparse matrix on a parallel machine can be thought of as a divide-

and-conquer process. The division is accomplished by finding separators in the graph representation

of the sparse matrix. A separator is a set of nodes that breaks the graph into somrn, number of

disconnected pieces when removed. In the example, separator SO divides the graph into two pieres

one to the left and one to the right These pieces are referred to as domains In the elimination tre,.

the separator nodes form a straight-line path; domains form distinct subtrees of the separator nodes

One important property of these domains is that they are computationally independent, nodes in

one domain are not affected by nodes in other domains. Another important thing to note is that the

separator nodes form a supernode in the sparse matrix, Thus. the terms separator and supertod-,

are synonymous.

On a parallel machine, a separator clearly forms the basis for a division of work. Some subset of

the available processors c.in be used to factor each domain that results from a separator. (no, these

domains have been factered, then the available processors can cooperate to factor the separati r

that formed them. Naturally. the factorization of a domain can be further sub-divided by fiidiit:

subsequent separators. In the example. separators SI and S2 divide the two domains forrno, h'.

separator SO, resulting in four domains, labeled D3 through D6.

Consider the factorization of the example matrix on a four processor machine Two prl-esslr•

would be assigned to each of the domains created by separator SO Similarly. a single prc,.. r

would be assigned to each of the- four domains created by separators SI and Sý (a."su111 t Him

processor P, handles domain D,+ 3). We refer to a domain with a single processor assIgned ti, it ;L, ill

owned domain. The computation would begin with -ach processor factoring their respectiv- ,wi,-.

domains. Processors would then cooperate to factor the separators that formed thesc leiauri

CHAPTER 5. PARALLEL PANEL METHODS 79

Thus, P0 and P1 would factor separator SI. and similarly P2 and P3 would factor S2 Finally. all

processors would cooperate to factor separator SO.

Note that the notion of domains being divided into smaller domains by separators does not stop

at the point where a domain is wholly owned by a processor. In general. any domain in the sparse

matrix can be subdivided into smaller sub-domains.

Before proceeding, we should first point out two important relationships between domains, sep-

arators, and columns. First. there is a one-to-one mapping between domains and separators. A

domain can be uniquely identified by the separator at its root and vice-versa. And second, a node

in the graph (and thus a column in the matrix) belongs to a hierarchy of domains, but it belongs to

one and only one separator.

5.1.2 Multifrontal Method

The description so far has been intentionally vague about the details of how processors actually

cooperate to factor a portion of the matrix, primarily because there are several ways to perform

this cooperation. We now briefly describe one way, the parallel multifr-,tal method [9, 341. The

multifrontal method is a column-oriented method, meaning that the L,,inputation is performed in

terms of columns of the matrix, and columns are distributed among processors. The actual mechanics

of the parallel multifrontal method are intimately related to the elimination tree of the sparse matrix.

As was the case in the sequential multifrontal method, the most important data item in the parallel

multifrontal method is an update from an entire subtree of the elimination tree to an ancestor column.

The sequential and parallel methods work with these updates in very different ways, however. Recall

that the sequential multifrontal method kept all updates from a subtree together in a single lower-

triangular frontal update matrix. In contrast, the parallel method works with individual column

uodates. never actually collecting them together. In fact. two updates from the same subtree will

often reside on entirely different processors.

To be more precise, consider a subtree D of the elimination tree. This subtree contains some

set of columns, and these columns produce updates to ancestor columns. Recall that the update to

some ancestor column j is computed by taking advantage of thL elimination tree structure. Assunme
the domain D is divided into subsequent domains D, by separator S. Then the update from D to j

is equal the sum of the updates from D, to j plus the updates from the columns in separator ,S to j.

update(j, D) = > update(j, D,) + Y, update(j, k).
kES

The update(j, D,) are computed recursively in child domains. The update(j, k) are computed by

adding a multiples of columns k into the aggregate update. In the parallel method, responsibility for

computing the update update(j, D) is assigned to a particular processor. Thus, in order to compute

an update(j, D), the responsible processor must receive all update(j, Di) as well as, all columns k In

separator S.

CHAPTER 5. PARALLEL PANEL METHODS

The parallel multifrontal method performs the actual factorization in terms of domains and

separators as follows. Each processor is assigned some set of matrix columns. The non-zeroes ,f

these columns are stored in the local memory of that processor Each processor is also assigned

responsibility for computing a set of domain-column updates. For each update updatr(j. D). a
count is kept of the number of update(j, k) and update(j, D,) that must eventually be added into it.

so that it will be possible to determine when a domain-column update is complete.

In performing the factorization, processors exchange two types of messages: completed column

messages and completed update messages. Processors act on received messages as follows. When a

processor receives a completed update update(j, D,) from another processor. the receiving processor

adds the update into update(j, D), where D is the parent domain of Di When a processor rec*-ives a

completed column k, where k belongs to the separator at the root of some domain D, the processor

locates the set of updates update(j, D) that it is responsible for computing. The processor computes
the new contributions to these updates that are generated from the received column, and adds these

contributions into the appropriate domain-column update-

One very important class of domain-column updates update(j, D) is those for which j E S and

S is at the root of D. Clearly, once such a domain update is complete, it contains all updates that
will ever be added into the destination column j. Thus, once the update is subtracted from the

destination column, a cdiv() can be performed on that column, and the column can be broadcast

to all processors that produce updates that involve it. In other words, if the column is a member of

the separator at the root of domain D. then the column is broadcast to all P that are responsible

for some update(j, D).

5.1.3 Parallel Multifrontal Example

To make the above description more concrete, let us consider the actual mechanics of a simple

example. A reader who is familiar with the parallel multifrontal method may wish to skip to the

next subsection.

In Figure 19 we have isolated the portions of the earlier grid example that are most relevant
when the example is factored on four processors. The parallel computation would begin with each

processor factoring the nodes that are internal to the owned domain assigned to it. The processors

would then compute the updates from these domains to ancestor columns. Assume processor P,

owns domain Di 3. Processor P0 would compute all update(j, D3) for j E {37, 38. 39. 43. 44. 4.45

Similarly, processor P1 would compute all updates update(j, D4) for j E {37, 38. 39. 47. 48, .. 1)
Note that no interprocessor communication is necessary up to this point.

Now consider domain DI. This domain produces updates to nodes 37 through 39, and 43 through

49. Processors P0 and PI cooperate to produce these updates. Assume that Po is responsible for all

update(j, DI) for even j, and P1 is responsible for the updates with odd j The nodes in separat,:r

.51 are also divided among P0 and PI. Assume that P0 owns node 38. and P1 owns 'i7 and 39

CHAPTER 5. PARALLEL PANEL METHODS

DI D2

'.4 so

03 05
ý4

ý4
3i 4 Di 5

D4 .4 D6

49 1

Figure 19: Grid example.

The next step in the computation involves sending the updates from domains D3 and D4 to the

processors that are responsible for the corresponding updates from the parent domain DI. Thus,

for example, P0 would send update(37, D3) to PI, where it would be added into update(37, DI).

Similarly. P1 would send update(37, D4) to P, (itself), to be added into update(37, DI). The samit
would occur for all other updates from D3 and D4.

Once P, has received the two child updates to column 37, then update(37, DI) is complete. Since

node 37 is a member of the separator at the root of DI. it has now received all updates that will be

done to it. The update is added into column 37, a cdiv(37) is performed, a.nd then column 37 is sent

to all processors that produce updates from domain DI. This is just P0 and PI. When processors P,1
and P, receive column 37, they use it to modify all update(j, DI) with even and odd j, respectively

One such update on Po is update(38, Dl), which is now complete. After adding the update into
column 38 and performing a cdiv(38), processor P0 then sends column 38 to P0 and P1. The result

will another set of updates and the completion of column 39. Column 39 is then sent to P0 and P1,
producing updates. At this point, all updates from DI are complete. Of course, while Po and PI

were computing updates from DI, P2 and P3 were simultaneously computing updates from D2.

The final step in the computation is the computation of SO. We ran assume these nodes and

the corresponding updates are distributed evenly among all four processors- The computation of

SO would begin when update(43, DI) and update(43, D2) arrive at the owner of update(43, DO), at

which point column 43 would be complete and it would be sent to all four processors. The mechanics

of the remainder of the computation are hopefully now clear to the reader.

CHAPTER 5 P4RALLEL PANEL METHODS k 2

5.1.4 Implementation Details

Several implementation details are important for the parallel multifrontal method. most ha% ing t,,

do with the non-zero structures of the columns and the domain-column updates These de'tails ;tr,-

important when considering the means by which domain-column updates are actually computed

A domain-column update update(j, D) in the multifrontal method keeps the same non-zero struc-

ture as the columns in the separator at the root of D. Recall that the separator columns forrm a

supernode and thus all share the same non-zero structure. The benefit of such an update storage

scheme is that the update from a column k E S to some ancestor column j can be added into the

appropriate update(j, D) without considering sparsity structures. Since both k and update-j. DI

have identical structures, the update can be added directly into update(j. D) using a dense DAXPY

operation. Since most of the work in the computation involves adding column updates into aggre-

gate domain updates, the vast majority of the parallel computation is performed as dense DAXPY

operations.

The point when non-zero structures become important is when an update update(j. D,) is added

into its parent update, update(j. D). The two updates generally have different sparsity structures

(with the parent structure being a superset of the child structure), so some non-zero matching must

be perormed. This matching can be done by computing a set of relative indices [7. 42], indicating

where in the destination a particular source non-zero can be found. Given such indices, it is a

simple matter to scatter the update into its parent. An interesting thing to note about these relative

indices is that they depend only on the sparsity structures of D, and D, and are independent of the

destination column j. Thus, a single set of relative indices suffices to add all updates from domain

D, into corresponding updates from domain D.

5.1.5 Distributing the Matrix Among Processors

One issue that has not yet been discussed is that of mapping columns and domain-column updates

to processors. The mapping naturally has important implicutions, affecting both the quality of

the computational load balance and the volume of interprocessor communication. This mapping

actually has two components. The first relates to how processors are divided among domains. 'We

use the proporlional mapping scheme of Pothen ai.d Sun [37] for this task. This strategy is discussed

in more detail in the next subsection. For now, we simply assume that each domain D has some

set of processors P(D) assigned to it. The second question, which we now briefly discuss, is how

individual columns and domain-column updates within a domain are assigned to processors, given

an assignment of processors to domains.

Since all processors assigned to a domain D cooperate to factor the separator Sý at the root of [)

it is natural to distribute the columns in S in a round-robin manner armong the processors in P, 1))

More precisely, we map columns to processors by working up from all leafs of the eliminat ion irw,

simultaneously. assigning column k in separator S at the root. of domain 1) to the processor in t~ I

CHAPTER 5 PARALLEL PANEL METHODS 53

that has least recently received a column This strategv achieves a round-robin list rib uti, i w ti

a single separator S, and also avoids processor mapping glitches wh.ein imIovitg fromll a s-parator t,ý

its parent separator. The updates update(j. D)) from D to ancestor columns are distributed m t

round-robin manner among the processors in P(D) as well

An obvious question at this point is why this complica-d mapping strategy is preferable t,: -,r0

that. for example, allows any column to be mapped to any processor The miiain benefit ,f this

stricter mapping approach comes in the form of reduced communication volume [9] Recall that

a column k in the root separator of domain D must be broadcast to all processors that protuc,-

updates from D. If these updates are computed by a subset Pt(D) of the whole processor set. dh1,11

the broadcast can be limited to the set P(D) as well.

5.1.6 Proportional Mapping

When a separator divides a domain D into a number of child domains D,l the processor set a."'Signed

to D must be split among the child domains D,. An obvious goal is to have the child domains

complete at roughly the same time. Thus, the processors should be divided among the domains irt

proportion to the relative amounts of work required by the domains. In some cases, the decision is

simple. If a separator produces two child domains, each of which requires an equal amount of work.

and if the number of processors assigned to the original domain is divisible by 2, then clearly half

of the processors should be assigned to each child domain However, with arbitrary sparse mnatrcre-ý

and unrestricted numbers of processors, the division task becomes much more difficult We us-,

a mapping scheme called proportional mapping developed by Pothen and Sun [37] to handle this

problem-

The basis of the proportional mapping scheme is quite simple. If one child domain requires Ir7 •, f

the total amount of work of all child domains, then x% of the processors should be assigned to work

on that domain. Of course, this may not correspond to an integral number of processors. Pothen

and Sun give simple heuristics for making reasonable division choices. The details are not relevant

to our presentation, so we refer the reader to [37] for a precise description.

5.1.7 Panels

Having described the parallel column multifrontal method, we now discuss modifications t1o this

method that improve data reuse. Recall that the vast majority of the actual computation performed

by the multifrontal method involves DAXPY operations. As we have mentioned earlier, such oper-

ations are inefficient on machines with memory hierarchies because they provide little opportunkt.%

to reuse data.

It is clear that data reuse can be increased in sparse factorization by manipulating set, 4f r,,o-

tiguous columns with identical non-zero structures as a group. Our approach divides each separat,,r

that is not in an owned domain into a set of panels, whert a panel is a set of contiguous colutmin

CHAPTER 5 PARALLEL PANEL METHODS

We use a single target panel size throughout the entire matrix That is. separators atr, sh jitt!,

panels that are as close as possible to the global target panIel size

This change in data distribution requires surprisingly few changes ho the column parallel 'it,

Naturally, the computation is now expressed in terms of panel updates. with processors ,xchaine

panels among each other in order to compute domain-panel updates [he most important)pjrat1,,A

in the computation becomes the computation of a panel-panel update, which we- refer to ;t,, a p'Modl

operation. This operation can still be performed without regard for sparsity structures, in thi- •, ýt

a dense matrix-matrix multiplication The mechanics of computing the update are idntical to, I..i.

of a sequential supernode-supernode update operation. When all updates have been receted h :ri

panel. then a pdir() operation is performed. This operation is identical to the ('omplutt-i),tperati-

in a sequential supernode-supernode method. The other important operation is the addtim f a

domain-panel update update(J. D) into a parent domain-panel. The primary difference in the ra-se

of a panel approach is that the update can be sparse along two dimensions It can affect a subset -f
the rows in the parent update. and it can affect a subset of the columns. Both types of sparslt. ar,-

easily accommodated.

Recall that the amount of data reuse that can be obtained in a supernode-supernode update

operation, or equivalently in a prnod), is determined by the width of the involved supernodes (or

panels, in this case). In particular, recall that a panel size of B results in roughly one cache niiss

for every B floating-point operations, according to our performance model. It is therefore desirald,

to make the panels as large as possible.

5.1.8 Supernode Amalgamation

A panel method clearly relies heavily on the presence of large supernodes in the sparse matrix tr,

group substantial numbers of columns into panels. While most supernodes will typically be quite

large, any sparse matrix will also contain small supernodes. To increase opportunities for our method
to collect columns together into panels, we perform supernode amalgamation [10, 171 as a first step

in the factorization. Amalgamation merges supernodes with similar non-zero structures to produce

larger supernodes. The merging is accomplished by relaxing the restriction that a sparse matrix only
contain non-zeroes. Zeroes are introduced as non-zeroes in order to give two superntdes identical

structures.

Two important issues for supernode amalgamation are the selection of amalgamation candidates

and the criteria for deciding whether a pair of candidates should actually be merged. Regarding th,

selection of amalgamation candidates, the most logical choice is to consider merging a supernod,l

into its parent in the elimination tree. We consider all such pairings. To evaluate a partil,-ular

amalgamation candidate, we use our machine performance model. We compare the modelled cost o,f

performing all updates from the two individual supernodes with the cost of performing the update>

from the larger supernode that would result after amalgamation. Amalgamation is performed if th,

CHAPTER 5. PARALLEL PANEL METHODS

CL

14

3 Simulated sOeedup
"DASH speedup

-Simrulated speedup
DASH speedup

Panel size Pane SzIt

BCSSTK1 5. 16 pocessors BCSST'(29. 32 processors

Figure 20: Parallel speedups for two sparse matrices

latter cost is smaller. The empirical results presented in this chapter will all assume that supernod.'

amalgamation has been performed prior to the factorization- The cost of this amalgamation is
actually quite modest. We have found that it increases the runtime of the symbolic factorization

phase by less than 10%.

5.2 Parallel Performance

Having described the parallel panel multifrontal method, we now look at the performance of Our

implementation. Figure 20 shows speedups for the parallel method, compared with a left-lookingv

supernode-supernode sequential code. The curves on the left show speedups for matrix BCSSTK 15

as a function of panel size, when factored on 16 processors. The curves on the right show suimilar

data for matrix BCSSTK29 when factored on 32 processors. These two performance curves Arý'
representative of the behavior we have observed for a wide range of matrices and machine sizes. \%~'ý

will present performance results for other matrices later in this chapter. Note that these curves so

both simulated speedups and speedups from the Stanford DASH machine. For reference. the [DASHI

machine achieves roughly 8 MFLOPS for a sequential code.

An important thitig to note from this figure is that our parallel performance rmodel giv.es rela-

tively accurate performance predictions, even though the model attempts to capture only the mnost

basic aspects of parallel performance. Modelled performance differs somewhat from achieved perf,ýr-

rnance, especially for BCSSTK29 on 32 processors, but even then the curves have the same general
40 ~shape. We believe the observed dliflerences are primarily due to the assumption in the perforniatic'

model that interprocessor, communication costs can be hidden from the processors. Since the, bASHl

CHAPTER 5 PARALLEL PANEL METHODS "?:

machine does not hide these costs, and sin,- commuirucation 'olu me is higher for the largvr rlalhin

BCSSTK29 on 32 processors exhibits the larger difference between modelled and actual perfurniaoc,

Overall, however, we believe it is reasonable to expect conclusions about modelled perfornaa,'e t,

apply to real performance as well

Another important thing to note from this figure is that the panel size ha:" a significant p,-rf.ýr

mance impact. For example, a panel size of 8 gives nearly 3 times the performance of par-I '.tz- f I

(a column method) for BC'SSTKI5. Similarly. a panel size of . roughly doubles performarice f,,r V('

SSTK29. Another interesting thing to note is that the best panel size is not constant Perforruanc,•

increases significantly when the panel size is increased from 4 to S• for BCSSTKI5 For BCSSTK't•.

however, performance decreases somewhat. From this and the previous observation, it is safe ,.t sa%

that the choice of panel size is an important issue for maximizing performance in a panel rmlethd

We will return to this issue later in this chapter.

5.3 Performance Bounds

At this point, it is natural to further investigate the performance of the panel multifrontal method

The issues we wish to understand are (1) what factors determine panel method performance and (2)

to what extent can this performance be improved, It is our belief that the best way to understand

parallel performance is to compare achieved performance with simple performance upper bounds

Within such a context, performance can be interpreted in two parts. First, one can look at how clos,

achieved performance is to the upper bounds and consider the reasons for any observed differences

Second, one can look at the upper bounds themselves and consider the reasons why they are less

than perfect. This is the general approach that is taken in this section. We begin by describing tA,-

simple but important upper bounds on parallel performance, the maximum load and critical path

bounds.

5.3.1 Maximum Load: Load Balance and Load Efficiency

One obvious factor that bounds the performance of a parallel computation)s the cornpitationai

load assigned to each processor. Specifically, the computation cannot complete in less time than th+'

maximum of the times taken by the individual processors to perform the tasks assigned to them.

ignoring all dependencies between tasks. This bound is typically thought of as a load balance boind.

with the underlying assumption that performance is less than ideal because some processors receiv,

a larger fraction of the global work pool than others. In the case of a panel method. how,-evr

less-than-ideal performance is also caused by changes in the size of the global pool. While ,m,

potential measure of the size of this pool, tne number of floating-point operations in a panel-orientl

factorization clearly remains fixed, the true measure, the number of operations multiplied by th,e

cost of each operation. actually changes with the panel size. The maximum load assigne'd ti, a

CHAPTER 5. PARALLEL PANEL METHODS ý7

S1IN -" 0 '

~law -- - - -

a- latel B-r

r......Loated speendu LO B n•al ance

--- Cntic¢ai path ncjPt

I I I I. ... I I i ,

S..0

a,0 Is at St 74 4 Il 1 4 6 111 X1 OR

Pani~m size Pnei size

BCSSTK IS. 16 processors SCSST K29 32 proc:ess~ors

Figure 21: Parallel speedups for two sparse matrices, versus performance upper bounds

processor thus also depends on the load efficiency, or the time required to perform each operattp)

The maximum load performance upper bound is easily determined by computing the modelled costs

of all tasks assigned to each processor.

5.3.2 Critical Path

Another important performance bound in a parallel computation comes from the critical path. "'hi

bound simply states that the computation cannot complete in less time than the time requnrdi

for the longest chain of dependent tasks in the computationm In the case of sparse factopzation

every path from a leaf in the elimination tree to the root of the tree forms a dependent chain. with
each step on the chain involving a pnerd(of a parent panel by its childo the communication of tde

resulting update from the child processor to the parent processor, the addition of that update in

the parent, a pdiv(operation on the parent, a piomdp c from the parent to its parent, and -, on

Again, this bound is easily computed using our performance modell We will discuss both tf these

bounds in more detail shortlyf

5.3.3 Performance Compared to Bounds

Figure 21 compares simulated parallel speedups with the two upper bounhs from above m At s oCan

be seen from the figurea parallel performance is well predicted by these bounds For hmail panels

performance is nearly equal the maximum load bound. The main limiting factor is the linlitl

reuse of data and thus poor ioad efficiency As the panel size incr 'ases. opportunities for data rew'-
increase and performance improves. However. at some point the critical path becomes constraining

CHAPTER 5. PARALLEL PANEL VETHODS

Processors are forced to sit i~iie because there is a limited amount o.f work that ,-an be perftori-d

in parallel. Performance flattens and eventually begins to decrease W'e note that while this fig.

tire presents results for only two matrices, a number of other matrices and machine sizes that A,

examined yielded similar results.

While we have touched on some of the more general issues that determine parallel perforrna',e

it is important to consider these factors in more detail and also to consider the broader 11ve)tIoII

of issues that limit parallel performance. This subsection will now undertake a more %VItefiillia

investigation of the factors that determine parallel performance We perform detailed ivstigat,,r>

of the maximum load upper bound, the critical path upper bound, task scheduling issue,", mIll,

interprocessor communication volumes. We do this to determine the indiidual importancr If Owh,

various limiting factors for the two example matrices and also to consider how these factor, affict,

performance for other matrices and other parallel machine sizes.

Maximum Load

As mentioned earlier, one important factor in determining parallel performance is the maximum

load assigned to any processor. Let us now look at this bound in terms of its individual components

One factor that plays a role in the maximum load is the quality of the load balance The

load balance is primarily determined by the mapping strategy. Recall that we use a proportional

mapping strategy, which performs a recursive assignment of subtrees of the elimination tree t,,

processor subsets. This strategy clearly leads to some amount of imbalance, since an ideal division

will not necessarily correspond to an integral number of processors being assigned to a subtree.

The load imbalance that results from this mapping strategy can be better quantified by comparing

the maximum amount of work assigned to a processor by this strategy with the amount of work thai

would ideally be assigned to a processor (which is simply total work divided by P) We compute,

the former by assuming that for each domain D in the sparse matrix, the work required to coniputle

updates from panels in the separator S at the root of D is distributed perfectly among the processors

P(D) assigned to that domain. For the two example factorizations, BCSSTKI5 on 16 processors

and BCSSTK29 on 32 processors, the processor that receives the maximum amount of work getz

27% and 49% more work than the ideal, respectively. Best-case processor utilizations for theýe tw,

problems are thus 79% (1/1.27) and 67% (1/1.49), respectively.

To provide a broader picture of the effect of load balance, Figure 22 shows maximum processor

utilization numbers due to load imbalances for a variety of matrices and machine sizes While the

data points are sufficiently chaotic in this figure that it would be difficult to give a precise descriptiln

of the effect of load imbalance, it appears safe to say that load imbalances limit processor utilizatil,

levels to between 70% and 85% of what they might be with perfect load distribution).

We should note that even these estimates are optimistic, since they assume that the work from

particular separator is distributed perfectly evenly among the processors assigned to that s'-parat,,r

CHAPTER 5. PARALLEL PANEL METHODS q

E
. .70

com GRiD10O

o BCSSTKiS
+ BCSSTK16

$."x BCSSTK17
* BCSSTKiB
o SCSSTK29

Praceswso

Figure 22: Maximum processor utilizations when considering load imbalance alone

In reality, a separator may produce some small number of updates (especially with large panels)

that must be distributed among some large number of processors. An obvious question here is

how the actual work distributions that result from real assignments of panels and panel updates ,

processors compare with the optimistic estimates above. We have found that the standard round-

robin approach, where the panels and panel updates at the root of a domain D are assigned round-

robin to the processors in P(D), yields a distribution that is almost identical to the optimistic

distribution over a range of panel sizes. With both BCSSTKI5 on 16 processors and BCSSTK29
on 32 processors, for example, any panel size choice between I and 32 gives a work distribution

that is within 10% of the simple prediction. Panels larger than 32 naturally result in worse work

distributions, but more important constraints than work distribution would come into play in such

cases.

When considering how load imbalance would affect performance over a wider range of matr;-

ces and machine sizes, an intuitive analysis of the proportional mapping approach indicates that

imbalance will represent a constant-factor drag on performance in both the best and the worst case

The other important component of the maximum load bound is load efficiency. This efficient3
is determined primarily by the panel size. With a panel size of B, most of the computation involves

the modification of one panel of width B by another. A larger panel size B thus leads to more data

reuse and a more efficient computation.

Of course, some portions of the computation are unaffected by the panel size choice since ,rflk
supernodes that are not in owned domains are split into panels. As it turns out, supernodes within

owned domains play a relatively small role in the factorization. Figure 23 shows the fraction 4f all

CHAPTER 5. PARAL4LLEL PANEL METHODS

Igoa

GRID1OO
-. GRIC200

S.BCSSTKI•

o + BCSSTK,6
x BCSSTKi 7
a BCSSTKi8

6W C 8CSSTK29

*64

§an

ol 4 m •I I I I 4 4 I

Processors

Figure 23: Fraction of all floating-point operations performed within owned domains

floating-point operations performed within owned domains for several matrices. For any substantial

number of processors the majority of the computation occurs outside owned domains The load

efficiency is thus heavily dependent on the panel size.

A simple combination of these two individual effects, load balance and load efficiency, give-s ihi

overall maximum load upper bound. For example, if load efficiency limits parallel performanc,, i,

75 % of ideal, and the load balance is such that parallel speedups are at most 80% of ideal. then I1h•

overall maximum load bound would constrain performance to 60% of ideal.

Critical Path

The other important upper bound on performance is the critical path. Clearly this path is affecrtd

by the panel size as well. In this case, however, the relationship is not immediately obvious %.,

now consider this relationship in more detail.

To help simplify our discussion of the critical path upper bound, we make use of crftict qub-path,

The length of a critical sub-path from a panel J is the shortest amount of time that must lap,.

between the time panel J has received all panel modifications and the time the entire factOrizal •ol

can be completed. The length of a CSP can be computed quite easily using the following reccursiv,

expression:

CSP(J) = i'(pdit(J))+T(pmod(J, parent(J))) + T(sendupdatc(J. parrut(.J•) + ("P(artri I

In other words, if panel J has not yet been completed. then the whole computation cannt c(imiplct.

until a pdiv(J) is performed, an update is computed from J to its parent, and thf updat, is ,,nt ei-

CHAPTER 5. PARALLEL PANEL METHODS 1,1

the parent. At this point, the best-case completion time is determined by th. critical sub-path ,

the parent panel.

The critical sub-path CSP(J) can be computed for all J by a simple top-down traversal , th,-

elimination tree The maximum value overall determines the critical path for the whole cornputatwin

Since CSP(J) is always larger than CS P(parent(J)), the critical path always begins with a leaf in

the elimination tree.

When owned domains are introduced, the notion of a task changes somewhat An owned ,,iair

encapsulates several panel tasks into a single larger domain task We assume that a processor handlhs

all owned domains assigned to it. both factoring the columns within the domain and computing

domain-panel updates from the domain to all affected panels. before moving on to separator t:tsk-

Under this assumption, it is quite straightforward to assign a completion time estimate ('T()D, , t'i

each owned domain. Each domain would then impose the following constraint on parallel run tine

runtime >= CT(D,) + T(sendupdate(D,. parent(D,))) + CSP(parent(D,)),

Since domains occupy the leaf positions in the elimination tree, the true critical path for the whole
computation begins with a domain (if a separator has no domains as children, then assume the

separator is the parent of an empty domain). Thus, the critical path is the maximum over all

domains of the above domain runtime bound.

While the above expression allows us to determine the length of the critical path given a panel

size B, it unfortunately says nothing about how the path length changes with B. To understand

the effect of the panel size, let us define CSP(J, B) to be the length of the critical sub-path from .1

with a panel size of B. From before we have:

CSP(J, B) = T(pdivtJ)) + T(pmod(J, parent(J))) + T(sendupdate(J, parent(J))) +

CSP(parent(J), B).

Simple computations reveal that the runtime costs of these operations are:

CSP(J, B) = B2 LjT0 p(B) + 2B 2 LjTop(B) + BLj3 + CSP(J'. B).

where Lj is the length of the first column in panel J, and J' is the parent panel of J in the eliminatiýn

tree. Recall that T0p(B) and 3 were defined in Chapter 4 to be the average cost of a floating-po(It

operation and the time to communicate one word of data, respectively. Note that several lower-order

terms have been dropped.

Now let us compare the length of this path to the length of the path from the first column in .1

to the first column in J' when using a panel size of I

CSP(J. I) = BLjTop(1) + 2BLjTop(l) + B3Lj + CSP(I', 1).

CHAPTER 5. PARALLEL PANEL METHODS

These two sub-path expressions bear a simple relationship to each other If the crttcai •utpath

expression is broken into a computation term and a communication term, we find that

C(SP(J. B) = BTP(B)(CSPco,,,p(J 1) +CKP'..P,..(i. 1)

Thus, the path length for a panel size of B can easily be estimated from the comutatind ard

communication components of the critical path for a panel size of 1. The amount of,,nilputat:,im

on the critical path increases roughly linearly in the panel size, while the amount of comiioatJ~m

remains constant. The owned domain at the bottom of the critical path is unaffected by a -hang-

in panel size. which mitigates the effects of an increased panel size somewhat, but we- not, that the,

work within a domain will typically be a small part of the path.

We observed in the earlier examples that the critical path limited parallel performance Th,,

path was too long to allow for a large panel size, thus forcing a tradoff between the efliciencv'y'f

the individual processors and the number of processors that could effectively cooperate. To obtain a

broader feel for the importance of this critical path bound, let us consider the length of the critical

path for a range of matrices. It is actually somewhat easier to think about the critical path as

it affects concurrency, the maximum parallel speedup that can be obtained for a problem. As we,

mentioned earlier, concurrency is computed by dividing the sequential runtime of the computation

by the length of the critical path.

To simplify the analysis somewhat. let us first consider dense factorizationr A smrnple computation

reveals that concurrency for a dense n x n matrix, using a panel size of B, is:

n
'BTop(B) +3

In other words, the maximum speedup and thus the maximum number of processors that can be used

for an n x n problem is proportional to n/B. This is not at all surprising, since columns are being

distributed among processors and there are only n columns in the matrix. Recall that the amount of

work performed in dense factorization is n3 /3. Thus the amount of work in the problem grows much

more quickly than the number of processors that can be used to perform that work- A factor of two

increase in concurrency requires a factor of eight increase in work. From this disparity in growth

rates, one can conclude that large parallel machines will require enormous problems. Equivalently.

one can conclude that concurrency will be quite limited for reasonable problem sizes.

Of course our interest in this chapter is not on studying dense problems, but rather sparse

problems. We find that sparse matrices suffer from the identical scalability problems. Specifically.

when normalized to do the same number of floating-point operations, 2-D sparse grid problem..

only expose roughly 3 times more concurrency than dense prohlems; 3-D grid problems exp,,se

less than two times more. To give some idea of how much concurrency is available in less reg;ular
sparse problems, Figure 24 plots available concurrency against. floating-point operations for a varieti

of matrices from the Boeing/Harwell sparse matrix test set. This plot. shows maxinum p,ssibl-

CHAPTER 5. PAR-ALLEL PANEL METHODS 93

BCSSTK'S
* 2CSSTK'F
x t3CSSTK! 7
*t BCSSTKIB

BCSS
T

K29
OCSSTK3C
BCSSTK31
BCSSTK32

* 8CSSTK33
* 2D Gnd
S3D Gnd

* Dense

Floating-po~nt opo~ations (Miion)

Figure 24: Concurrency in sparse problems.

speedu-s for these matrices, due to their critical paths, under our parallel performance modell

The less regular sparse problems can be seen to contain comparable amounts of concurrency to Th,'

dense, 2-D grid, and 3-D grid problems. Indeed. the growth rates appear quite similar We therefor.,

expect to see the same sorts of concurrency problems for spa-se problems that w- described for dt'isv

problems.

To put these growth rates in better perspective, let us consider a single example Matrix [(

SSTK33 requires ioughly 1.2 billion floating-point operations to factor, and it allows a max,11-11MIm

parallel speedup of roughly 50. This matrix is much larger than those typicaLly considered in paral-

lel sparse factorization studies, yet it can only make good use of relatively few processors Keep In

mind that this 50-fold speedup bound is an optimistic upper bound. Now consider the case Aherr-

we want a problem with a 100-fold speedup bound instead- That problem would require roughly

8 times as many floating-point operations, or roughly 10 billion. It is clear that the problem sizes

quickly overwhelm the resources that can be brought to bear on them.

When considering the panel sizes that would be appropriate for the parallel factorization f

sparse problems, one thing that is clear is that a large panel size would cause a significant rduction

in concurrency, a reduction that most problems simply could not afford on all but the smallest -f

parallel machines.

'Note that these concurrency figures are heavily dependent on Tp(I) and j Lower values of these tnihilow
parameters would produce higher concurrency numbers.

CHfAPTER 5. PARALLEL PANEL METHODS .4

Task Scheduling

Another important issue when considering the performance of the paralldl (owiputiat, '-;,- i!-I"

that achieved performance is below both the maximunm load and critical path u pper bjuride- ;o

points where the two are nearly equal (see Figure 21). a disparity that we loosel, attribute ii, 'sk

scheduling issues. What we mean by task scheduling is simply that some proce,,:.soýrs sit Aile Jurliji:

the course of the computation not because there are no tasks to be perforrneo, but instead b.a..s.

tasks are not available when those processors are free to perform them.

Note that achieving performance equal to the upper bounds at all times would require til -X

tremely good schedule. Consider, for example, the point where the maximum load and criticai jaith

upper bounds are equal. To achieve performance equal to the maximum load upper hmund at this

point, the processor with the most work assigned to it would have to be executing tasks continuou--l%

To achieve performance equal the critical path upper bound as well, that processor would also hw',.

to execute tasks on the critical path as soon as they are ready, an unlikely prospect if the processor is
always executing some task. It is thus understandable that performance is below the upper bounds

Overall, we have found that at the panel size where the upper hounds are least constraining

achieved parallel performance is 157 to 3,5% below the bounds. In other words, scheduling is.-es

play an important role in limiting performance. Note that scheduling issues would be much lss

important if there were an abundance of available concurrency. With more concurrency. pror-.s-r,

would be much less likely to be without a task to execute. Unfortunately, as we discussed ,arlwer

concurrency will generally be in extremely short supply. We have generally found that any exce.-

concurrency is better spent on larger panels rather than on 'slack' to improve the task schedule

Communication Volume

Our assumption so far has been that the time required for an interprocessor message depends oni!

on the size of the message and the communication bandwidth available between the sour,# and

destination processors. Clearly this assumption is only valid if the message does not exporin,-,

significant contention on the interconnect. Let us briefly consider the volume of communicati,ri

placed on the interconnect by this computation to obtain some feel for the amount of conteinm

that might arise.

Interprocessor communication for a panel method can perhaps best be understood ly lookin4 ai

how communication volume and computation volume grow with larger problerts and larger paralli

machines, Communication volume for a panel multifrontal method can be shown to grow as i n `P')

for an it x n dense problem, and as O(k 2P) for a k x k 2D grid problem ;24.] The 'outpulatlli

required for these problems grows as 6(0a) and O(k 3ý, respectively Thus, in both crases a pan.l

method would re'n ire O(P/n) words of -orriruuniration for every float ing-point operation wbher,. ,1

is a measure of the problem size. Note that crommunication %,l1m1 is indep4.ndenlt of thw panl -ii

Now consider a factorization problem that prod tuces a manageable arnimie of ronutinw!)!',:it,

CHAPTER 5, PARALLEL PANEL METHODS

+ BCSSTK(6
x BCSSTKi6

2 a BCSSTKI7

EBCSSTK*.S

3S 8CSSTK29

C
9

E
E

Figure 25 ('ommunication to COFTplitation ratios for sparse prohletw-

when using P processors. In order to increase the number of proces~sors without ,ve'rwhelrning h

processor interconnect, the amount of communication per floatring-point operation Tshoulfl rernia

constant. The communication to computation ratio is O(P/Ti). so consequently is must grow iinwar!k

with P. Recall that this growth rate is identical to the rate required to expose sufficient rcncurren(c%

for P processors, and that this rate was ronsidered excesbive 'Thus, comimunication , olunio is alsý

a crucial limiting factor.

We should note that keeping the communication to comnputat r s ion ratio constant nra), n-t

sufficient to keep the ppocessor interconi.ect from saturating 'The problem hero is that ea, h -rd

of interprocessor communication may become moret and more expensive as the machine sIze' gr,)V

since It may have to traverse more and more links on the interconnection network in facs it ea

be shown that a constant ratio is inadequate when using a panel method that send- pont-trr~n?

messages on a machine with a mesh interconnect. This problem rian be overcote in t hle multifrntt

method since it relies on multicast messages, where the identical messageti ISent r Io seeral procrP- 1

Such multicasts can be implemented to make more efficient use of the processor intercothnnch

While growth rates are interesting for understanding asymptotic behavior~ it Is also imnpirtaii

to consider the 'constants' for realistic problems- Figure 25 shows communication voluta-me figurzs Vr

several sparse problems across a range of machine sizes- The figure plots. the ratio f total wor -t1

communication (8-byte words) to total floating-point operations. Note that sendtill i .raltp

growth rates are somewhat faster than lingfr in the number of processors for small iiiari 'ne• trL

level off to roughly linear for the larger machines. Regarding the question of what commmnir-o ,i

ratios are sustainable on real machines. this will of course depend on Ihe speific parariwi,*r,

CHAPTER 5. PARALLEL PANEL METH(O));S

the machine. On today's machines, a ratiof It I "t 'A [P rr " pI'r I I I rItinf at m uýI rIi Vw' I

most likely be sustainable. When comparing these nminbers I, in;ti-cin cutiiiilfilcaln iiC, ,iNiTWi i, ,n

ratios, keep in mind that the cromputation is only a,|hw, m4 r,iughl,. t% pr cessur ,0 iitthlul ,

of 0.0-5 (20 FP ops per word) or more would be diffic•ult, t, sustami

Summary

In summary, a panel method faces a number of rather formidable perfornanf-t- ,bstacl-s lit -rn r

to achieve high processor utilization levels, the nethod would require

"* an extremely effective subtree-to- processor-subset mapping to keep load ilbalancve I,,

"* a large panel size to keep load efficiencies high,

"* an abundance of concurrency, so that the panel size can be made large to iiwrease lad effi•ienrv

and also so that task scheduling issues would be unimportant; and

"* sufficiently high interconnect bandwidth that the interconnect does not saturate

For the examples we have considered here. with matrices that require between 100 million and 1 bil-

lion floating-point operations to factor and machines with 16 to 64 processors, each of these factr'

reduces achieved performance somewhat. The mapping strategy was seen to reduce performance bý

15% to 30%. Concurrency limiations led to panel size choices that reduced performance by another

25%. We believe that imperfect task scheduling further reduced performance by another rughl%

15%. As a result, maximum processor utilization levels were roughly 50%.

For larger parallel machines, two of these factors stand out as being particularly ,onstraining

critical path length and interprocessor communication volume. Both require that a factor of tw,

increase in the number of processors be accompanied by a factor of eight increase in the number ,f

floating-point operations in the problem in order to afford any hope of achieving similar processor

utilization levels. In general, we would expect these problem size growth rates to be unsustainable

As a resilt. more realistic problem sizes would achieve extremely low utilization levels for larger

machines.

5.4 Improving Performance

Having investigated several factors that limit parallel performance, we now briefly consider the extent

to which these factors can be improved. Recall that one source of inefficiency is load imbalanc, tu,

to the panel mapping. The main source of this imbalance is the need to round to an integral nuil.r

of processors when assigning subtrees to processor sets in the proportional mapping. Onmw •k io

means of alleviating this problem is to remove the requirement that the processor sets be hisjw!nt

essentially allowing fractions of processors to be assigned to suibtrees We have performed •,t,'MO

CHAPTER 5. PARALLEL PANEL METHODS

experiments using such a division scheme. While this scheme improves load balance significaitly Li

also dramatically increases the difficulty of mapping individual panels t., processors Fhe mapping

strategy must somehow share a single processor among several distinct subtrees I'sing the saine

mapping strategy that we used for the unmodified method, overall performanc, was not significantlv

improved. The advantages of the improved load balance were almost entirely offset by the reduoed

quality of the mapping.

An alternative approach to improving the load balance might use a more dynamic approach ti,

task distribution. For example, a processor might have a -preferred' set of tasks, corresponding t,,

those tasks that it would perform in a statically scheduled computation. If a processor finds that it

has no preferred tasks available, then it would steal a preferred task of another processor One cobt 4f

such stealing would be increased interprocessor communication, since stolen tasks would presuniall"

access data that is not local to the stealing processor. Initial experiments have indicated that the

communication costs of this task stealing outweigh the load balance benefits on the DASH machine

Another important limitation in a panel method is the length of the critical path, which plays a

role in determining panel sizes and ultimately limits the number of processors that can be effectively

used to solve a sparse problem. As far as the possibility of reducing the length of the critical

path, we note that this problem has received some attention (see [29] and [33], for example). Note

that the multiple-minimum-degree ordering heuristic we used to preorder the sparse matrices is

known to produce 'tall' elimination trees and long critical paths, and thus would appear amenable

to parallelism-increasing techniques. However, we believe any improvements will be small constant

factors. The 2D grid problems. for example, are in many ways ideal for parallel machines, but they

still suffer from critical path constraints.

On the question of whether the task schedule could be improved, we note that there appear to

be significant opportunities for improvement. Whle finding an optimal schedule is clearly imprac-

tical, the schedule we have been using, which is implicit in the round-robin mapping of panels to

processors, may be far enough off from optimal that it can be improved upon substantially We

have experimented with a more sophisticated simulation-based mapping strategy, where the panel-

to-processor mapping is done using a rough simulation of the parallel computation. When a panel

task is mapped to a processor, the simulated time of that processor is advanced to reflect the time

at which the panel task was made available and the time required to perform that task- Each new

panel task is assigned to the first available processor that is eligible to perform that task. This

more sophisticated mapping strategy has shown initial promise, improving performance over a sini-

pie round-robin strategy by between 5% and 20%. However, this moderate overall performance

improvement would most likely not warrant the increased complexity of this mapping approach

In either case, the improvements discussed in this section would at best lead to small constant

factor increases in performance. The most important factors limiting the performance. the available

concurrency and the interprocessor communication volume, remain as imposing obstacles

CHAPTER 5. PARALLEL PANEL METHODS

o•,- GlSSDIO0

* BCSSTKi 5
* BCSSTK16

BCSSTK17

0.'71

* BCSSTK29

Figure 26: Performance for panel size of 8, relative to performance of best panel size.

5.5 Panel Size Selection

While the previous sections have made it clear that panel methods have some important limitations.

at the same time they are still quite useful methods, particularly for moderately parallel machin.,:s

Indeed, they provide much higher performance than popular column methods. This section looks at

an important issue for panel methods that has so far not been considered, the issue of choosing a panel

size- Results from the previous section showed that overall performance varies quite dramatically

with panel size. What it did not show was how to choose an effective size for a given sparse matrix

and a given machine size.

Given that the marginal benefits of a larger panel size B fall off quickly as B increases, a

reasonable strategy would be to always choose some fixed, relatively small panel size. The ideal size

would be large enough so that it provides most of the benefit of large panels, while at the same time

not being so large that it swallows enormous amounts of concurrency. For our performance model.

"a panel size of 8 strikes quite a reasonable balance. In cases where a larger panel size could be used.

"a choice of 8 still yields per-processor performance that is at least 75% of peak. In cases where a

smaller panel size would have been more appropriate, a panel size of 8 still provides more than half

of maximum concurrency.

To evaluate the effectiveness of this approach, Figure 26 shows relative efficiency numbers. cout-

paring performance using a panel size of 8 with the best achieved performance over all panel s•7e

choices (under our performance model). As expected. performance for this strategy is quite rea.on-

able, although it is less than ideal in two ranges. For small numbers of processors. a panel size f ,f

CHAPTER 5. PARALLEL PANEL METHODS ý.+4

represents lost opportunity, since a larger panel would be quite appropriate. For large number., 4

processors, a panel size of 8 is too large, forcing processors to sit idle for significant portions of th,

computation.

A potentially better way to choose the panel size is to specifically tailor it to the matrix and
the machine size. Performance results from the previous section indicated that the point at whil,,

performance is maximized is heavily dependent on the maximum load and critical path upper bounds

We now consider a panel size selection strategy based on these bounds.

Our approach to choosing a panel size considers panel sizes as falling into three different ranges

Consider the speedup graphs in Figure 21- In the first range, very small panels, the critical path
bound is much higher than the maximum load bound. and performance is nearly equal the maximum

load bound. With plenty of 'slack' in the computation, scheduling issues are less crucial and thus

processors rarely sit idle. The second range includes panel sizes for which the two upper boind.,

are comparable. At such points, parallel performance is below both bounds (and performance is

generally highest in this range). The third range includes large panel sizes, where the critical path is

much more constraining than the maximum load and performance is nearly equal the former bound

The split points for these ranges naturally depend on the particular matrix and the particular

machine size.

Based on these simple observations about performance in the various ranges, we use the following

panel size selection strategy. The optimal panel size is clearly not within the first range. Overall

performance can be increased here by increasing the panel size. Based on empirical observation.

we consider any panel size for which the critical path bound is more than twice the maximum load

bound to be in this first range. The optimal panel is also clearly not in the third range. Smaller

panels would reduce processor idle time without significantly decrease per-processor performance

We consider this third range to include panel sizes where the maximum load upper bound is more

than twice the critical path upper bound, The best panel size choice therefore sits somewhere within

the second range.

To find a reasonable choice within this range, we make the following assumptions. First, we

assume that when the panel size is increased, per-processor performance increases in proportion

to the increase in the maximum load upper bound. And second, we assume that the number

of processors that are active at a time decreases in proportion to the critical path upper bound

Maximizing performance is then a matter of finding the panel size where increasing the panel size

leads to a marginal decrease in the critical path upper bound that is larger than the marginal increase

in the maximum load upper bound. Note that this point can be computed quite inexpensively We

discussed simple and inexpensive ways to estimate the maximum load and critical path upper bounds

given an arbitrary panel size earlier.

Applying this strategy to a range of sparse matrices from the Boeing/Harwell test set gives result,

shown in Figure 27. This figure again compares performance using our panel selection strateg,

CHAPTER 5. PARALLEL PANEL METHODS

E

*- GRIDO0o

* BCSSTK15
* BCSSTK16
* BCSSTKi17
* SCSSTK18
SBCSSTK29

4 is 32•

Proce•sors

Figure 27: Performance relative to best case.

against the best performance with any panel size choice. Our strategy is clearly quite effective

choosing panel sizes that give 95% or more of peak performance in all cases We should note that

this strategy has been observed to be quite robust over a variety of machine model assumptions a.-

well. We looked at machines with a range of different interprocessor communication bandwidths aw',

cache miss costs, and in all cases this strategy chose panel sizes that gave near-optimal performance

In summary, the choice of panel size plays an important role in determining overall parallel per-

formance. The simple strategy of choosing a fixed panel size is reasonably effective How.+er. highr

and more robust performance can be obtained by making use of information abý,ut performan,'

bounds.

5.6 DASH Performance

To give a more global perspective on the results of this chapter. we now present performance resutt

for the Stanford DASH machine across a range of problems and machine sizes Figure 28 show,

speedups over an efficient sequential code (left-looking supernode-supernode) for between - and .|!

processors of the DASH machine when the best panel size is chosen. For 16 or fewer processors -

this best panel size is usually 8. For more than 16 processors, the best panel size is usually I

For reference, we note that the sequential code used to compute speedups performs at roughly

MFLOPS.

The reader should draw two conclusions from these performance results. First, parallel spwedup'

are relatively low for this method, for reasons that have been discussed earlier in this rhapter Hli,

CHAPTER 5- PARALLEL PANEL METHODS

14

13

12

it

6 GRID100
A• GR0200

"0 S CSSTKI 5
S+ OCSSTKi6

.x BCSSTKi 7
o BCSSTKi•8

B BCSSTK29

4 12 fe is at a it 30

Proesovs

Figure 28: Parallel speedups on DASH machine

individual processors in the parallel machine are not being very well utilized At the same tini.
the reader can also conclude that parallel distributed-memory machines can indeed provide high
performance for sparse Cholesky factorization. In factoring a range of sparse matrices, the DASIH
machine consistently provides in excess of 75 MFLOPS, and it provides well over 100 MFLOPS for
the larger matrices in the set. Thus, even with the relatively low speedups, a parallel machine stil
represents a cost-effective means of obtaining high performance for sparse Cholesky factorizatiOn

5.7 Contributions

The first contribution of the work described in this chapter is our proposal to structure parallel
factorization methods in terms of panels. While numerous methods for performing sparse Cholesky
factorization on distributed-memory machines have been proposed (a few examples are [8. 9. 22, 34] ,
we are the first to have considered the use of a panel distribution to improve the use of a niernor%

hierarchy. This chapter has investigated a multifrontal panel method, but we note that pan"Is' '-
be integrated into almost any column method, and in all cases they produce significantly higher

performance.

Another contribution of this work is that it provides the first results for a high-performance
factorization implementation on a relatively powerful distributed-memory parallel machine. Pre, i,'iis
work has only considered very low performance machines (usually the iPSC/2). Parallel sparse,

lactorization will only attract widespread interest once parallel machines provide performance ihat is
substantially higher than that available on sequential machines. By investigating a high-perforrnanr,
parallel implementation in this chapter, we have demonstrated that good performance is ikih,,it

CHAPTER 5. PARALLEL PANEL METHODS 1W2

possible for this computation.

Another contribution of this work comes from its emphasis on understanding paralh- p)t-rf ,r-

mance and characterizing the factors that limit this performance. In particular. ,ur prf,,rna1c,•

modelling provides a strong foundation for understanding precisely why the parall,,l method •i•mAr i

the performance that it does. It also allows us to understand the impact of changes in th- ,ai,-.

width on overall performance, and thus to choose a good panel width It also allows us t,) dI'm,-u

strate the limitations that are inherent in any method that works with columns (or sets 4f ,'umiii'

in the matrix. Little work had previously been done on modelling and understanding perforrm'an:'.

5.8 Conclusions

This chapter has proposed and investigated a panel multifrontal approach to parallel sparse ('holeský

factorization. We have found that panels are quite effective at increasing data reuse arid thus
improving performance over a more traditional column approach on parallel machints with caches
We observed factors of two to three improvement. However. we also found that panel methods

and indeed any methods that distributes columns of the matrix among processors. suffer from two
severe limitations. They do not expose enough concurrency in the problem and they generate

too much interprocessor communication traffic. Parallel speedups over efficient sequential method'
were observed to be low for moderately parallel machines, and we would expect only moderate

performance improvements from larger parallel machines.

Chapter 6

Dense Block-Oriented

Factorization

The previous chapter showed that a panel decomposition has some severe limitations for Cholesky

factorization on large parallel machines, both because it exposes limited amounts of concurrency and

because it generates enormous amounts of interprocessor communication traffic. An obvious alterna-

tive to a panel decomposition is a 2-D decomposition, where the matrt ts divided into a checkerboard

of rectangular blocks, Such an approach has been used successfully for dense factorization on large

parallel machines [44], and it has been proposed for sparse problems as well [4, 43. 45]. This chaptpr

will investigate several important issues for methods that use a 2-D decomposition strategy

While our ultimate aim in this thesis is to perform sparse factorization efficiently. this chapter will

actually be devoted to a study of parallel dense factorization methods. Our intent is to thoroughl.

study several important questions that are relevant to all block methods, whether dense or sparse

Primary among these are questions of how the overall computation should be struitured and what

factors limit its performance. We will consider questions that relate specifically to sparse methods

in the next chapter.

We should note that in many ways, efficient parallel dense Cholesky factorization is a well-

understood problem. Indeed, an existing method has been shown to provide excellent performance

on a wide range of parallel machine sizes [44] There are, however, other possible approaches it,

this computation that have understandably received less attention. It may be the case that a block-

oriented sparse method could obtain higher performance using one of these other approaches This

chapter investigates the performance of a range of dense factorization approaches to determine which

would provide viable frameworks for building a sparse method.

103

CHAPTER 6. DENSE BLOCK-ORIENTED FAC('TORIZATI()N Il

6.1 Introduction

This chapter begins by considering the ways in which a parallel block-orwrited de,.ns, (h',leskv

factorization can be structured. Just as panel factorization could be performed using several alter

native formulations (fan-out, fan-in. multifrontal), a block decomposition leads to several ,iff,,rent

approaches. The primary difference among these approaches is in where updates to, non-z;!er,-N in

the matrix are performed We consider the two obvious choices. The first is a destination-forripult,,

(DC) approach, where all updates to the non-zeroes in a block are computed on the processor t.h;t

owns the destination block This is the approach used in [44] The second is a source-romplptit"

(SC) approach, where updates are computed by the processor that owns one of the source hl,cks

We will describe simple parallel programs that implement both of these approaches

The chapter continues by looking at the simulated performance of these two methods. As in th,

previous chapter, simulated speedups are compared against simple upper bounds, a maximum lhad

bound and a critical path upper bound, The DC approach is found to provide performance that

is nearly equal the upper bounds. The SC approach. on the other hand, gives performance that is

well below the bounds and quite erratic. Since a SC approach could potentially be interesting in a

sparse matrix context, we decide to further investigate its performance We discuss the reasons for

its erratic behavior and describe modifications that improve this behavior.

6.2 Block-Oriented Factorization

A 2D decomposition divides a dense matrix into a number of square blocks. A sequential factorization

computation, expressed in terms of these blocks, would look like:

1. for K=O to N-1 do

2. LKK = Factor(LKK)

3. for I=K+I to N-I do

4. LIK = LIKL-,

5. for J=K++I to N-I do

7. for I = J to N- I do

8. Li = Lij - LKL'K

Consider the set of operations that involve a particular off-diagonal block Lrp The block

receives a number of block updates (Step h), where each update involves a pair of blocks from a

previous block-column. Once all such updates have been performed, the block is multiplied by the
inverse of the diagonal block Lj,,, (Step 4). The block then acts a source block for updates in Step S.

updating subsequent blocks. Note that a block can appear as either the first or second source hl,ck

in Step 8. In the first position (I' = I and J' = K), block Lrj' updates blocks in block-rou V In

CHAPTER 6. DENSE BLOCK-ORIENTED FACTORIZATION 10j5

the second position (I' = J and J' = K)ý Lij, updates blocks in block-column F' This patirrij

will be important later in this chapter.

A diagonal block LKK participates in a similar set of operations. It receiýes updates fromr all
previous block-columns in Step 8. Once all updates have been performed. ('holesky factorization

is performed on that block (Step 2). The block (its inverse, actually) is then used to solve block,

below it (Step 4).

Throughout this chapter, we will concentrate on the implementation of Step •, the block update

operation. This is by far the most important step in the computation.

Turning to a parallel implementation of this block-oriented computation. we note that each block
will naturally be mapped to some processor, map[Lij]. That processor will hold the non-zeroes 4

the block in its local memory. Given a block mapping, a crucial question is where the block updat*,:

in Step 8 will be computed. Since this step involves three different blocks, there are three obvious
processor candidates. One is to compute the update on the processor map[Ll,]. Such a strategy

is typically referred to as a destination.computes approach for obvious reasons. The second is to
compute the update at map[LIKI, a source-computes approach. The third candidate, computing

the update on map[LJK!, is also a source-computes approach.

We should note that other alternatives for distributing the computation exist. For example.

Ashcraft has described a family of fan-both methods [6] that are hybrids of the SC and DC' ap-
proaches. In these methods, multiple processors compute updates from a given block, and multiple

processors compute updates to a given block. Th? main advantage of this class of methods is that

they reduce interprocessor communication volumes. However, they also significantly increase storage

requirements in an already memory-intensive computation. We therefore do not further consider

these methods.

Another alternative for distributing the computation is to use a dynamic mapping strategy, whterv
processors grab blocks when they are ready to perform computations with them. We will comment

on this alternative later i:, this chapter.

Returning to the destination-computes and the two source-computes approaches to the coin-
putation, let us consider how these approaches affect the structure of a parallel method. When a
block is mapped to a processor, that processor is then committed to performing the corresponding

set of update operations. Figure 29 shows the updates that must be performed for the three task

assignment strategies. If map[LIK] computes all updates, then in the course of the computation.

map[LIKI will need to receive all blocks LUK, J < K (all blocks above it in the same block-coluini),

and it will produce updates to blocks Ltj to the right of LIK. Similarly. if map[LJKi computes the
updates, then it will need to receive all blocks LIK, K > J and will produce updates to blocks in a

later block-column. If map[Ltj] computes updates, it will need to receive pairs of blocks. LUK and

LJK. from all earlier block-columns K.

We now consider the performance levels these approaches attain, the amounts of storage thlw

CHAPTER 6. DENSE BLOCK-ORIENTED FACTORIZATION

I,K computes J, K computes 1, J computes

Figure 29: Blocks used for update operations.

require. and the communication volumes they generate. We actually restrict our attention to two

of the three approaches, the Ltj (destination-computes) approach and the LIK (source-computes)

approach. The other approach is sufficiently similar to the LIK approach that conclusions about

the latter should hold for the former as well.

6.3 Parallel Factorization Algorithms

6.3.1 Block Mapping

Before describing specific algorithms, we first describe the strategy we use for mapping blocks to

processors. The same mapping will be used for both the SC and DC methods. Our mapping is

done using a simple 2-D round-robin distribution. This commonly used approach looks at the set of

processors P as a 2-D VT/f by %_ grid, where each processor has some label P,.,. This grid is then

used in a "cookie-cutter" fashion to map sections of blocks to processors. That is, a block Llj IS

assigned to processor Ptmodv-,.Jmod,/r-" A four-processor example is shown in Figure 30. Besides

doing a reasonable job of distributing the factorization work among the processors, this mapping

strategy also possesses two properties that will be important for a parallel method. First, blocks

that are neighbors in the matrix are mapped to processors that are neighbors in the processor grid

And second, a row cf blocks is mapped to a row of processors, and similarly a column of blocks is

mapped to a column of processors. We will discuss the benefits that these properties bestow shortly

6.3.2 Destination-computes method

Structure of computation

Recall that the destination-computes aproach performs block updates to a block by pairing blhrk>

from earlier block-columns The parallel computation is structured so that once a block is compicird

CHAPTER 6. DENSE BLOCK-ORIENTED F4CTORIZATION

:P1 p

I p3~:: .3
i • ~~~...... ' *°-* ° °

L i~~~~~PO P2. '' ~ ~ P
iP3: P1 P.......

PO P2: APO P2:

~P1 P3' iPO pi~~oPH

....

Figure 30: A 2-D round-robin distribution.

meaning that it has received all updates from previous blocks and has been multiplied by the inverse

of the diagonal block, then it is sent to all processors that own blocks affected by it. When a processor

p receives an off-diagonal block LUK from another processor, it determines whether it has already

received any blocks LJK such that map[LLJ] = r- The set of blocks that fit this condition is easilv

determined from the block mapping function. For each appropriate block LJK, the corresponding

update to Luj is performed. When a diagonal block LKK arrives at a processor, all blocks owned by

that processor in block-column K are checked to determine whether they have received all updates

and are ready to by multiplied by the inverse of the diagonal. [C not, the diagonal block is queued

Recall that a block Ljj receives one update from each block-column to its left in the matrix

To determine when a block has received all such updates, a count is kept of the number of updates

performed so far. When the count reaches J - 1, then the block is multiplied by the inverse of the

diagonal block Ljj (this is done immediately if the diagonal is available, or when the diagonal block

arrives otherwise). The block is then sent to all processors that own blocks modified by Ljj If the

block is a diagonal block, then it is factored and sent to all processors that own blocks below it.

An important question here is how to determine the set of processors that own blocks affecte(l

by a particular block. Recall from an earlier discussion that a block LK only affects blocks in row

I or column I. Recall also that the 2D round-robin mapping strategy maps a row/column of blockks

to a row/column of processors. Thus, the block can simply be multicast to row/column I mood V3

of the processor grid. This technique for limiting communication was originally proposed i In 1, and

has been exploited in parallel implementations of several linear algebra computations

('HA PTER 6- DENSE B LOCK- ORIEN TED FA('TORIZA 1flON

32

Is - -Maximum Oad
Cnticai patlh

- Smatdspeedjup

1632 2a a

Block size

Figure 31i Performance results for destination-computes mnethod. n 204,, 1 6 t4

Simulated performance

Figure 31 shows simulated performance for the method described above, using t64rcisr

factor a 2048 x 2048 dense matrix. The figure compares simulated speedups with critical path awi

maximum load upper bounds across a range of block sizes, as we have done in previous chapiers

The results show that this destination-computes method is quite effective. yielding performance that

is nearly equal the maximum load upper bound for all hut the largest block sizes. Furthermiore, his-

method can make excellent use of a memory hierarchy. The 2-D decomposition exposes sufistiriot

concurrency in the problem to allow a relatively large block size to be used. The block size if

32 which is used in the figure. for example, achieves excellent use of a processor cache with~uit

exhausting available concurrency.

Comparing this approach to a panel method, we find the maxim-umn parallel speedup achl'".ei

with a panel method is roughly 31. This is s.'gnificantly below the roughly 48-fold spet-dlip fr

the block approach. The differences between the two approaches are expefcted In he rvets twivr

pronounced with more processors.

Communication volume

Another important quantity In a parallel method is the volumne of interptroessor -' mrnunicat lnt

Total communication volume for a destination-comnputes method can he conriputed as folijiws All

blocks, with the exception of the diagonal blocks, are sent to a row -nd a cohi~inn 4f liIci ,rs

2v"P- total processors. in the course of the computation. Since every i(10-terr In the moat rix bloinvý

(WAP JIl? 614.SE BL(t)' 'Iv t E II'. PH *iI h UA B,

to ý- ~ne block~ andi t wtr itre'n2n s~- - u~ ,taoik 0 in

a I 2 V`7-1 o r Y n2 v!73 words

To~ cornpare this coilIIItill ic at 1;nI ý-h'lllva vithl l tli gi-ii'r i.-1 1,x ýr 1 1)1

P fl~otte that a dense- panel approa~ch would b roadcz;t , er paw-! t,, -vi-rý ljri.-~- gi'. tig 7 I'

cornitnuniIcation % olmitie. Trhe hick distri bution thus su I s, tatri H r,-d itrc- tit i"At t.0

Another Important thing to niot#' ab~.ut thiidiit i('iipis h11.4 -rwn'trd' app,;;i, ii1 0

its commiunication 'volume is 1 ll~eedent 4f tilt blo':k '1f-Tl Iii,' 1,14 c~i lh<to-f i 1

w ith other issues in mind. The hIdick sizt- wV u-. is 32 hN :3', Such td..ck- ;itr (Mlus: ritýat%:

that they fully exploit thet proce!s-.)r cachie zas- per o~ur perf' *naui- ii, del and thu', 4u'..'

pfer-processor performiance W\hile the load h'iilatirtwul 1w h-'s l.t 1!r vt'. ii r ot*u -

any improvemtent would comne at thlt cost of a red uuct i on tit e(r.pri 's,,, r p.-rf uual

6.3.3 Source-computes mtethod

Structure of computation

The other block factorization approach we- consider Is the LIK~-comrputes. or sourcr--roinpiutvs ap-

oDroach. The structure of this parallel computation is quite straightforward When a block LjK
is completed, it is multicast to all processors rnap[Lzxj. I > J (i.e., all processors that own block,
below LUK in column K). When a proceissor receives a complete off-diagonal block LUK de-stinerd for
a block LIK that it owns, it checks whether LIK is complete as well. If so, the processor computes
an update to block Ljj and sends 'it to rniap[L11]. If not, the received block Lj Is queued with
LIK . When a processor receives a complete diagonal block destined for some LIK , it checks to sfee
if LIK has received all updates, and performs the inverse multiplication if It has. If it has riot. then
the diagonal block is queued with LIK.

To determine when a block is ready, an update count is again kept with each block. When the
count for LIK reaches K - 1, the block is multiplied by the inverse of the corresponding diagonal
block (if the diagonal block is available). Once completed. the block can be used to compute updates
corresponding to queued blocks.

One small modification to the above approach allows it to interact more naturally with a grid of
processors. Rather than sending the update directly from rnap[LIx] to niap[Lij], which may lead
to messages between physically distant processors in the parallel machine, the update can Instead
be sent from mapf LIx] to rnap[LjxK+I), an immediate neighbor. The update can then he combined

* with the update from LjxK+i to Ljj, with the combined update being sent off to LU1 K+2. and so on]

Simulated performance

Figure .32 shows simulated performance for this source-comrputes Implementation, again iusung (A
processors for a 2048 by 2048 dense factoriz~tion Note that performance is qjuite erratic and is

('CHAPTER 6. DENSE BLO(CK-ORIENTED AT I')RIZA TION i V,

04

48-

40

32

16 - Maximum load
...

.ca pa.
"

-Simuiatec speeau0

to 32 64 i 2W
BiOC Saoe

Figure 32: Performance results for source-computes method- n = 204,& P 64.

generally well below the maximum load upper bound, Let us briefly look at the reasons for This

behavior.

Consider the simple example in Figure 33. Assume that each block is assigned to a differclit pro-
cessor. The parallel computation begins with the factorization of L0O,. This block is then multica•si

to all blocks in column 0, and the corresponding owner processors perform inverse miultiplications

Several off-diagonal blocks in column 0 complete roughly simultaneously, and they are then multi-
cast to all blocks below them. Messages corresponding to each of these blocks will arrive at block

L4,0, and these messages will cause the corresponding block update operations to be performed.

Since the blocks above L4 ,0 complete at roughly the same rime. and assuming there is some small
random component to their completion times, it is reasonable to assume that the blocks will arrive

in a random order, and thus the updates from L4,0 will be computed in a random order.
Now consider block L4 ,1. Processor map[L 4 ,] cannot begin computing updates until L4 .1 receives

an update from L4,0. Ideally, this would be the first update computed by L4 .0 . However, due to
the random arrival order this is quite unlikely. If updates are computed in a first-come, first-served

order, then the update to L4,1 would typically happen after several other updates. Note that these

other updates are much less important than the update to L4 ,1 . An update to L4,2 , for example,
does not enable map[L 4,2] to begin computing updates because L4 ,2 must also receive an update

from L4,1 . Note that while we have only looked at column 0, similar delays will occur in subsequent

columns as well.

The observed performance is therefore easily understood. It is below the upper bounds becaus,
processors spend significant amounts of time sitting idle, waiting for important updates that happen

CHAPTER 6. DENSE BLOCK-ORIENTED FACTORIZATION IlI

p\ 1,0

4,0 4,1

Figure 33: A simple block example.

after less important updates. Performance is erratic because the amount of time a processor must
wait depends on the order in which blocks arrive at a processor, which is randon, ind thus carn

change from run to run.

Note that the performance numbers shown here are by no means worst-case results for a source-

computes approach. Subtle differences in implementation can lead to huge swings in performance

For example, our initial source-computes implementation handled blocks that arrived at a pair block

before the pair was complete somewhat differently. Instead of holding them in a queue of waiting

blocks, we instead held them in a stack, which is somewhat easier to implement. The fact that the
matrix is triangular actually leads to a somewhat reasonable arrival order for later columns in the

matrix, but this reasonable order was reversed by the stack implementation. Performance was often

a factor of two or more lower than performance for the queue-based approach.

A poor task execution order is not the only problem with this source-computes approach to the

computation. Another problem is its per-processor storage requirements. A processor that owns a

block towards the bottom of a column would receive all blocks in that column nearly simultaneously.

Unfortunately, as we will show shortly, this approach requires large blocks to keep communication
volumes low. The column of large blocks that arrive at a processor would generally require thore,

storage than the blocks actually assigned to that processor, thus severely limiting the size of problem

that could be solved.

Prioritized method

The obvious solution to the problem of updates not being computed in the right order is to prioritize

the computation of these updates. We use the following simple scheme. Each processor chooses L.

its working block the leftmost block it owns that has not yet been used to produce updates. Ilh,

leftmost block is chosen because it will generally be the one that is first ready to produce uptdat,-

CHAPTER 6. DENSE BLOCK-ORIENTED FACTORIZATION 112

SJL

0.

W 4

a

4.

32

Wi "'...

is Load balance "'."
. Cnriica path

s[Simulated speedtuo

I I I I

Block size

Figure 34: Performance results for prioritized source-computes method. n = 2048, P = 64.

The processor then produces all updates from this working block in order of increasing destination

column number. This order more closely matches the true urgencies of the updates. Only once all

updates from a block have been compute i does the processor move on to another working block.

In order to reduce storage requirements, a processor explicitly requests blocks from other processors

when it is ready to use them.

As a simple example, consider block L4,0 from the earlier example. In a prioritized scheme.

processor map[L 4.o) would begin the computation by requesting that rnap[Lo,o] send the diagonal

block. After modifying L4,0 by this block, the processor would request L1, 0 from its owner processor

Once the corresponding update is computed, the processor would continue by requesting L2 (and

so on. Software pipelining can be used to avoid having the processor sit idle while a block request

is serviced. That is, a processor can request block Lj+,,K while computing the update that results

from block LJK.

Figure 34 shows the simulated performance for this simple prioritization scheme (64 processors

2048 by 2048 matrix). The prioritization removes the erratic behavior of the first-come. first-

served approach, and it also yields performance that is nearly equal the load balance upper bound
Indeed, predicted performance for the prioritized source-computes method is roughly equal that of

the destination-computes approach for equal block sizes.

Communication volume

(ommunication volume for the source-computes approach is easily computed as follows Fr ,vrX

block update from some block LK. one block LUK is communicated from above and one l-pait

CHAPTER 6. DENSE BLOCK-ORIENTED FACTORIZATION 113

to L-j is sent to the right, giving a total of 2B 2 communication, where B is the block bizo 'lhb,
update operation performs 2B' floating-point operations. Thus. B floating-point operations are per-

formed for every word of interprocessor communication. Since the entire computation performs n'a/3

floating-point operations. the parallel computation therefore cormmunicatec n3 /3B words between

processors.

Comparing this 70/B communication rate to the n2 ý/P rate for the destination-computeý. ap-

proach, we find that in order for the two to produce the same volume of communication, the block size

in the source-computes method must grow with the problem size. In particular. the two approach,.-

produce identical communication volumes when B = nl/3ViP-. In general, the corresponding bl,,ck

size will be much larger than the block size that can be used with a destination-computes approach.

yielding significantly worse load balance. In the earlier example, where 64 processors were used t

factor a 2048 by 2048 matrix, the block size that yields equal communication is 85. The sinmulated

parallel speedup for the destination-computes method with a block size of 32 is roughly 49. while

the speedup for the source-computes approach with a block size of 85 is roughly 28.

As a brief aside, we note that the source-computes approach may have advantages over a
destination-computes approach in environments where the number of processors is either not known
a-priori or is subject to change during the computation (i.e., in a multiprogrammned environment). If
the source-computes computation were structured using an entirely dynamic schedule, where at run-

time processors grabbed the first available LUK block and produced the corresponding set of updates,

the resulting computation would generate a comparable volume of communication as the statically
scheduled version. The above communication results for the source-computes approach assume little

about block placement; the results are little changed when blocks are scattered randomly about the

machine. The destination-computes approach, on the other hand, makes several assumptions about
block placement and thus would not be nearly as amenable to dynamic scheduling.

6.3.4 Summary

Based on the results of this section, we conclude that both the destination-computes and source-

computes approaches to dense Cholesky factorization are viable approaches, although the source-
computes approach requires more attention to the details of scheduling and storage. Of the two. the

destination-computes approach is preferable because of its communication behavior. The remainder

of this chapter will concentrate on the destination-computes approach.

6.4 Predicting Performance

So far, we have only presented performance results for a single problem size and a single machbi

size To expand our results, Figure 35 shows simulated parallel processor utilization numbers acrn,
a wider range of problem/machine sizes. This figure shows performance for a destinatiun-coiputes

CHAPTER 6. DENSE BLOCK-ORIENTED FAC'TORIZATION 114

S

0

CLa-

0 P-264
P=1024

I IiI
0 404 OW low

Prooiem size

Figure 35: Performance versus problem size for destination-computes method

method using a block size of 32. As was the case with the examples shown earlier, performance has

been observed to be nearly equal the maximum load upper bound at all points.

In order to obtain a better feel for the way in which achieved performance relates to paranor.'rs

such as the block size, the machine size, and the problem size, we now derive an analytical expressi•n

for maximum processor utilization. Since performance is constrained by load balance, the bound -

based on a calculation of maximum load assigned to any processor. We derive this expression for a
destination-computes strategy, although the identical bound holds for the source-con put es mnet hod

The balance of computational load will naturally be determined by the set of blocks assigned t,

a processor, and the amount of work required for each block. Recall tha" block receives one updat,"

for each block-column to its left. Since each individual block update operations performs the- sam,,
amount of work, the work associated with a block Ltj is therefore proportional to J

The processor that receives the most work in a 2-D round-robin mapping is easily determiilel

Think of the dense matrix as an S by S matrix of super-blocks, where each super-block S ii,"

cookie-cutter worth of blocks in the round-robin mapping. In the example of Figure 30..' is 1

The processor in the lower-right corner of the cookie-cutter (processor P3 in the example) aiwavý

receives the block within a super-block that requires the most work, and thus it receives the most
work overall.

Now consider the exact amount of work this processor receives For the super-block in positi,,tr

1, .1, the lower-right processor owns a block that receives Jv"ip block updates. each of which r,,.

quires 2B 3 floating-point operations. Summing over the whole matrix, the number of float n1- 1,,ýt

CHAPTER 6 DENSE BLOCK.-)RIENTED FA(CTORIZATI()N

operations assigned to the lower-right proces.,or is

5~l, + 2,. 1

1=: J=[Iv ' 3
-1i- -

The total amount of work in the entire computation is n3 /3. and since n = . 5vT ideally %&,:,rk I,'r

processor would be:

3P

Dividing the maximum load oany processor by the ideal load per processor gives th, f,,l,,wi4

upper bound on processor utilization:

(S 1)(S + 2)

We have empirically found this simple function to be a very accurate predictor of parallel perfor-

mance. It also tells us a great deal about the general behavior of the parallel method. For example.

processor utilizations levels of 507 are reached quite quickly (S = 4). However. higher levels require

much larger S values. A level of 7.5% requires S = 10 and a level of 90% requires S = 28. To put

these numbers in better perspective, note that a 1024 processor machine using a block size o.) 32

would require an n = 10.000 problem to achieve 75% utilization, and an n = 28,000 problem to

achieve 90% utilization. In other words, a cookie-cutter block distribution is quite effective at pro-

viding 'reasonable' processor utilization levels, but it requires quite large problems before utilizations

are pushed into the 80-100% range.

6.5 Model Verification

So far in this chapter we have looked only at simulated performance. We now look at the accu-

racy of our model in comparison to real machine performance. Figure 36 compares actual parallel

speedups on the Stanford DASH machine (25 and 36 processors) with simulated speedups for tile

same problems. The DASH speedups are somewhat below the predicted speedups, hut lhey ar'

quite close.

6.6 Conclusions

This chapter has considered parallel dense Cholesky factorization using a 2-D. or block-oriented

matrix decomposition An important objective in looking at d,'nse factorization has been to un-

derstand more general issues olf how a block-oriented ('holesky factorization should be structured

We conclude that of the two reaLsonable choices. destination-coniputes or source-computes, hboth ar.

iable options but a destination-computes strategy is preferable. It is simpler too implenienit pro if,-.

CHIAPTER 6 DENSE BLOCIK>ORIENTED FAC'TORIZATION

fa 3

a s

S- DASH-

Problem size Pomsz,

p . 2 P - 36

Figure 36: Simulated and actual speedups for destination-computes method. fuir '.5 and 36 proc,(essM'rN

Actual speedups are from the Stanford DASH machine.

more flexibility in the choice of the block size, and has fewer implementation pitfalls Our gal ml

the next chapter will therefore be to devise a sparse block method that uses a destinatlotlcroiihjt'e>

framework,

Chapter 7

Sparse Block-Oriented

Factorization

7.1 Introduction

Having investigated general issues for dense block-oriented Cholesky factorization, we now turn

specifically to sparse block methods. This chapter focuses on two practical and important questions

related to sparse block-oriented factorization. First, we consider the complexity of a parallel sparse

factorization program that manipulates sub-blocks. We show that a block approach need not be much

more complicated than a column approach. We describe a simple strategy for performing a block
decomposition and a simple parallel algorithm for performing the sparse Cholesky computation II

terms of these blocks. The approach retains the theoretical scaLability advantages of block methodd
We term this block algorithm the block fan-out method, since it bears a great deal of similarity t,

the parallel column fan-out method (211.

Another important issue in a block approach is the issue of efficiency. While parallel scalabilitv
arguments can be used to show that a block approach would give better performance than a column

approach for extremely large parallel machines, these arguments have little to say about how well

a block approach performs on smaller machines. Our goal is to develop a method that is efficient

across a wide range of machine sizes. We explore the efficiency of the block approach in two parts

We first consider a sequential block -actorization code and compare its performance to that of a true

sequential program to determine how much efficiency is lost in moving to a block representation

The losses turn out be quite minor. We then consider parallel block factorization. looking at the

issues that potentially limit its performance. The parallel block method is found to give extremely

high performance even on small parallel machines. For larger machines. performance is good but

not exrellent primarily due to load imbalances We quantify these load imbalances and investigate

117

CHAPTER 7. SPARSE BLOCK-ORIENTED FACCTORIZATION I H

the causes.

This chapter is organized as follows, Section 7 2 describes our strategy for decomposing a spars,

matrix into rectangular blocks. Section 7.3 describes a parallel method that performs the factor-

ization in terms of these blocks. Section 7.4 then evaluates the parallel method. both in terrnis 4

communication volume and achieved parallel performance Section 7.5 gives a brief discussion ,f our

results, Section 7 6 discusses future work. Section 7 7 discusses related work. and finally conclusion:

are presented in Section 7.8

7.2 Block Formulation

Perhaps the most important question in a block-oriented sparse factorization is how to structure the

sparse (holesky computation in terms of blocks. Consequently, our first step in describing a block-

oriented parallel method is to propose a strategy for decomposing the sparse matrix into blocks

Our goal in this decomposition is to retain as much of the efficiency of a sequential factorization

computation as possible. Thus, we will keep a careful eye on the amount of computational overhead

that is introduced.

7.2.1 Block Decomposition

We begin our discussion by considering some of the general issues that are important for a block

approach. We also discuss how our approach addresses these issues. We believe the main issues

that must be addressed are the following, First, blocks should be relatively dense. Since the blocks

will be distributed among several processors. there will certainly be some overheads associated with

manipulating and storing them. These overheads should be amortized over as many non-zeroes as

possible. The block decomposition must therefore be tailored to match the non-zero structure of

the sparse matrix. Another important issue is the way in which blocks in the matrix interact with

each other. If the interactions are complex, then the parallel computation can easily spend more

time figuring out how blocks interact than it would spend actually performing the block operations

Finally, the individual block operations should be efficient.

The primary motivation behind our decomposition approach is to keep the block computation
as simple and regular as possible. Our hope is that a regular computation will be an efficient

computation. We keep the computation simple by avoiding two distinct types of irregularity (lt

irregular interactions between blocks: and (2) irregular structure within blocks.

Irregular Interactions

Since a sparse matrix in general contains non-zeroes interspersed with zeroes throughout the matr

it would appear desirable for a block decomposition to possess a large aniount of flexibility ill chof)si1rg

blocks. This flexibility could he used to locally tailor the block structure to match the aciund

CHAPTER 7. SPARSE BLOCK-ORIENTED FACTORIZATION ii',

They produce
an update

Two source
blocks interact

The update affects
portion* of other blocks

Figure 37: Example of irregular block interaction. Dotted lines indicate boundaries of affected areas.

structure of the sparse matrix. One seemingly reasonable decomposition approach, for example,

would locate clumps of contiguous non-zeroes in the matrix and group these clumps together into

blocks. This approach has serious problems, however, and we now discuss the advantage of giving

up some flexibility and instead imposing a significant amount of rigidity on the decomposition.

The primary problem with a flexible approach to block decomposition concerns the way in which

the resulting blocks would interact with each other. Recall that in sparse Cholesky factorization a

single non-zero Lik is multiplied with non-zeroes above it in the same column Ljk to produce updates

to non-zeroes L,- in row i and column j. When the matrix is divided into a set of rectangular blocks.

the blocks interact in a similar manner. Consider the simple example in Figure 37. This figure shows

a small set of dense blocks from a potentially much larger matrix. During the factorization, the block

in the lower left will interact with a portion of the block above it to produce the indicated update.

which must be subtracted from portions of the blocks to its right. Keep in mind that each of these

blocks is potentially assigned to a different processor. Thus, for each update operation the processor

performing that update must keep track of the set of blocks that are involved, the portions of these

blocks that are affected, the processors on which these blocks can be found, and it must dole out

the computed update to the relevant processors. Keeping track of all such block interactions would

be enormously complicated and expensive. With a large number of blocks scattered throughout the

matrix, the cost of this irregularity would quickly become prohibitive.

In order to remove this irregularity and greatly simplify the structure of the computation.
we decompose the matrix into blocks using global partitions of the rows and columns. In other

CJLHAPTER 7. SPARSE BLOCK-ORIENTED FAC(TOMIZATIO.N' PI1

Figure 38: Example of globally partitioned matrix.

words, the columns of the matrix (1 ... n) are divided into contiguous sets ({ I ... 1- } {p2 -

11,..., {pN ... n}), where N is the number of partitions and pi is the first column in partition i. An
identical partitioning is performed on the rows. A simple example is shown in Figure 38. A block
L1j (we refer to partitions using capital letters) is then the set of non-zeroes that fall simultaneously

in rows {jp. _P1+1 - 1) and columns {pj... pj+I - 1. The main advantage of this rigid distribution

comes from the fact that blocks share common boundaries. A block LIK now interacts with block
LJK in the same block column partition to produce an update to b!ock L1j.

One possible weakness of a global partitioning strategy is that its global nature may not allow

for locally good blocks. We will soon show that this is only a minor problem.

Irregular Block Structure

Another issue that can have a significant impact on the efficiency of the overall computation is the
internal non-zero structure of a block. Just as we restricted the choice of block boundaries earlier to
increase regularity across block operations, we now consider restrictions on the internal structures

of blocks to increase regularity within a block operation.
Note first that allowing arbitrary partitionings of the rows and columns of the matrix would

lead to blocks with arbitrary internal non-zero structures. Recall that a block update operation is
performed by multiplying a block by the transpose of a block above it (as a matrix-matrix multipli-

cation). With arbitrary non-zero structure within the blocks, the corresponding computation would
be a sparse matrix multiplication, which is an inefficient operation in general.

In order to simplify the internal structure of the blocks and keep the computation as efficient

CHAPTER 7. SPARSE BLOCK-ORIENTED FACTORIZATION 121

as possible, we take advantage of the supernodal structure of the sparse matrix. Speocificall., wý-

choose partitions so that all member columns belong to the same supernode. Since the columns if a

supernode all have the same non-zero structures. all resulting blocks will share this property Thu,.

a block Ljj will consist of some set of dense rows. A block may not be completely dense, since noi

all rows are necessarily present. A single structure vector keeps track of the set of rows present in a

block. This sparsity within a block has little effect on the efficiency of the computation. as we shal

soon show.

Before proceeding, we note that Ashcraft [4] proposed a similar decomposition strategy indepen-

dentlv.

7.2.2 Structure of the Block Factorization Computation

Our goal in placing the above restrictions on blocks in the sparse matrix is to retain as much efficiency
as possible in the block factorization computation. We now describe a sequential algorithm for

performing the factorization in terms of these blocks and evaluate that algorithm's efficieaicy The

parallelization of the sequential approach that we derive here will be described later.

At one level, the factorization algorithm expressed in terms of blocks is quite obvious. The follow-

ing pseudo-code, a simple analogue of dense block Cholesky factorization, performs the factcrization

Note that I, J, and K iterate over the partitions in the sparse matrix.

1. for K =0 to N-I do

2. LKK - Factor(LKK)

3. for I= K+ to N-1 with LtKO 0do

4. LIK - LIKLo•

S. for J =- K+I to N-I with LJK50 do

6. for I=J to N-I with LIK#O0 do

7. Lij - Lij - LKLTK

The first thing to note about the above pseudo-code is that it works with a column of hlock,,

at a time. Steps 2 through 4 divide block column K by the Cholesky factor of the diagonal hkock

Steps 5 through 7 compute block updates from all pairs of blocks in column K. We therefore stor,
the blocks so that all blocks in a column can be easily located. This is accomplished by storing on-

column of blocks after another, just as sparse column representations would store one column ,)f

non-zeroes after another. One potential problem here is that step 7 updates some destination block

Lt,, whose location cannot easily be determined from the locations of the source blocks. To mak,

this step efficient, a hash table of all blocks is kept.

Now consider the implementation of the individual operations in the pseudo-code The blok

factorization in step 2 is quite straightforward to implement. Diagonal blocks are guaranteed Ih

CHAPTER 7. SPARSE BLOCK-.O-IIEY77h;D Li ('TO! IZAI'ION'2

be dense, so this sten is simply a dense ('holesky factorizat on th, mul i'cat, n e r-i, •,r--

of the diagonal block in step 4 is alk,) quite straightforward. This stop dr's w), act !iall\ . ltj, -

the inverse of LK.K Instead. it solves a series of triangular systems Whil- the ltik LI1K i ii-!

necessarily dense, the computation can be performed wtthout consulting the win z-r,, -tru, u r'- ,

the block.

The remaining step in the above pseudo-code, step 7. is both ther most irip,,rtant Awi the, ri-,

difficult tu implement. It is the most important because it sits within a dk ul -neist-,d 1,,,p anid ihu-

performs the vast majority of the actual computation. It is the most difficult because it wtrk> with

blocks with potentially different non-zero structures and must somehow reconcile, these -, rui or'-

More precisely, recalt that a single block in L consists of some set of dense rows from a1iong the r,-w-

that the block spans (see the example in Figure 38). When an update- is performed in step 7 atlO•e

the structure of LIK determines the set of rows in Ljj that are affected. Sminlarlv, the structurl, of

LUK determines the set of columns in Ljj that are affected.

The block update computation is most conveniently viewed as a two-stage process. A set of

updates is computed in the first stage, and these updates are subtracted from tiL appropriate,

entries in the destination block in the second, or scatter stage. The first stage, the computation of

the update, can be performed as a dense matrix-matrix multiplication. The non-zero structures of

the source blocks LIK and LjK are ignored temporarily: the two blocks are simply rnultiplited ,,

produce an update.

During the second stage, the resulting update must be subtracted from the destination [h1'
most simple case occurs when the update has the same non-zero structure as the destinati,)n block

We have coded our dense matrix-matrix multiplication routine as a ,,t.,'1Iply-subtract (I e ., =

C - ABT), rather than a multiply-add, so the destination block can be used as the dest.natiail

directly, without the need for a second scatter stage.

Consider the more difficult case where the non-zero structures differ. The first step in this ca.ý,-
is to computt a set of relative indices (42]. These indices indicate the corresponding posititon in Th'e
destination for each row in the source. Two sets of relatives indices are necessary in order tr, scatt,r

a single block update; rel,, the affected set of rows and rel,. the affected set of columns.

The computation of rlative indices is quite expensive in general, since it requires a search t hr oijih

the destination to find the row corresponding to a given source row. Fortunately, such a search is -ni%

rarely necessary due to an important special case. When the destination bloý:k haIs dense structur.,

the relative indices bear a trivial relationship to the source indices, Note that the rel, nm:ces alwaý

fall into this category, since the destination block always has dense column structur, W, will ,,
more preci.,e about exactly how often relative index computations are necessary shortly

Once relative indices have been computed. the actual scatter is perfiormed xs fll•-ws

1. for i = 0 to lenigthIK -- I do

2. for j= 0 to lengthiK - I do

CtHAPTEK 7. SPARSE BLO(K.ORIENTEI) FAI(T)RIZA FI(O.'s

3. Ltj 1 r J, !i)lel 1;iI -- l L rU, i r d, f -- up CYte't f

Scattering is also somewhat t-xpemw.,e , and it o nmuch inore prefaltiit than relati%, mdd-x -niu

putation. The frequeicy with which relative index computations and scatters must be p'rf, 0rii,-d

will be considered shortlv

In summary., he efficiency rofa block update operation depends h.avilk on t he nw -zer,1 struct iur'•.

of the involved blocks.

"* The best case occurs when the update has the same structure as the destination In this.,.

the (' = (* - ABr operation can use the destination block as. its destination

"• The next best case occurs when the destination block is dense The updatei must he scat tero-

but the relative indices can be computed inexpensively

" The worst case occurs when the update has different structure from the destination and the

destination block is sparse. The update must be scattered, and relative indices are relativek

expensive to compute-

7.2.3 Performance of Block Factorization

We now look at the performance obtained with a sequential program that uses a block decomposiliot

and block implementation. Since our end goal is to create an efficient parallel approach, perfrormanfe

is studied for the case where the matrix is divided into relatively small blocks. The blocks should

not be too small, however, because of the overheads that will be associated with block operations

We consider 16 by 16, 24 by 24 and 32 by 32 block sizes. To produce blocks of the desired size B

we form partitions that contain as close to B rows/columns as possible. Since partitions are subs,.t,

of supernodes, some partitions will naturally be smaller than B.

The performance obtained with the sequential block approach on a single processor of the Stan-

ford DASH machine is shown Figure 39. This performance is expressed as a fraction of the per-

formance obtained with an efficient sequential code (a supernode-supernode left-looking metholý

From the figure, it is clear that the block approach is relatively efficient. Efficiencies for four 4f b.

seven matrices are roughly 65% for a block size of 16 and roughly 75% for a block size of 32. %,\e

will discuss the reasons why the other three matrices. GRID 100. GRI D200. and B(1SSTK IX. achwii,

significantly lower performance shortly.

Our earlier discussion indicated that the performance of the block method might suffer because" 4

the need for relative index calculations and update scattering. In order to gauge the fl'ect of th,'se

two issues on overall performance. 'Table 29 relates the amounts of scattering and relative ird,'s

corn[utation (for B = 16) to the number of floating-point operations performed in the fartorizatiii

The numbers are quite similar for the other block size choices The first. column compares th,

CHAPTER 7 SPARSE RLOCK-ORIENTED FA('TORIZATION 124

"GRIC100
"GRAD200

- o BCSSTKi5
S+ BCSSTKi6

x BCSSTK17
*- S CSSTKiS

* cO BCSSTK29

CL

d2i

Black size

Figure 39: Performance of a sequential block approach, relative to a sequeontial left -lookinrgý
supernode-supernodle approach, on a single processor of the Stanford DASH rn : 1 ti.

Table 29: Frequiency of relative index computations and scatters for block method, compared with
floating-point operations (B 1)

Relative indices Scatters
FP9rmonbe (relative to FP ops) (relative to FP os)

GRIDIOO 0.37% 4.0%
GRID200 0 18% 2.47
BCSSTK15 0.04% 1.6%
BCSSTKI6 0-02% 1 A4%
BCSSTK 7 0.04% I.8%
BCSSTK18 0.11% 2.6%
BCSSTK29 0 01% 1.0%

CHA PTER 7. SPARSE BLOCK-ORIENTED VA (TORIZATION 1 27

Table :30: Frequency of relative index computations and scatters for block method, comtpared with
sequential multifrontal method (B = 16).

Relative indices i Scatters
[Problem f(relative to seq MNF) (relative to seq MF)

GRID100 78% 729%
GRID200 80% 697-
BCSSTK 15 109% 1057
BCSSTK16 50% ss__ _

BCSSTKI7 61% 90%
BCSSTK18 163% 917
BCSSTK29 .32% 40'7(

number of distinct relative indices computed against the number of floating-point operations. Th,-

second column compares distinct element scatters against floating-point operations. The table shows

that even if relative index computations and scatters are much more expensive than floating-point

operations. the related costs will be small. Clearly, the vast majority of block update operations

produce an update with the same structure as the destination block.

It is also interesting to compare relative indices and scatters to those performed by a true sequen-

tial method. Table 30 gives the relevant numbers. In this case, the comparison is with a sequential

multifrontal method, where notions of relative indices and scatters are easily quantified. The corn-

parison is relevant for the left-looking supernode-supernode as well, since the two methods perform

similar computations. Note that the block method performs a comparable number of relative index

computations and scatters.

Ashcraft [4] has described methods for improving block structure and thus decreasing the need

for scattering. It is our belief that a very simple block decomposition is more than adequate for

keeping such costs in check.

7.2.4 Improving Performance

It is clear from the previous section that the block method is generally quite efficient. Recall, however.

that the method was much less efficient than a true sequential method for several problems. Data

on relative index and scatter frequency showed that these were not the source of the losses. The

losses are actually due to overheads in the block operations.

Consider a single block update operation. It must find the appropriate destination block through
1P a hash table, determine whether the source and destination blocks have the same structure, and tlwn

pay the loop startup costs for the dense matrix muitiplication to compute the update. While thes,'

costs are trivial when all involved matrices are 32 by 32. in fact many blocks in the sparse inatrix

are quite small. In the case of matrix GRIDI(0. for example, the average block operation perfornm

only 96 floating-point operations when B = 32, as compared to the 65536 operations that would h-

CHAPTER 7 SPARSE BLO('K-ORIENTED 4('TORIZATION 1-;

SGlRtDlOO
:7: GRD200

* BCSSTK 15
* BCSSTK16
* BCSSTK17

ois BCSSTKI8

0BCSSTK29
II I,

BýOcx size

Figure 40! Average floating-point operations per block operation.

performed if all blocks were 32 by 32 full blocks. The average number of floating-point operations

per block operation across the whole benchmark set 'is shown in Figure 40. Note that this figure

quite accurately predicts the performance numbers seen in the previous figure.

The primary cause of small blocks in the block decomposition is the presence of small supernodes.

and thus small partitions. To increase the size of these partitions, we now consider the use ,,f

supernode amalgarn-tson [10, 17] techniques. Recall that the basic goal of supernode amalgamation Is,

to find pairs of supernodes that are nearly identical in non-zero structure. By relaxing the restrict io

that the sparse matrix only store non-zeroes, some zeroes can be introduced into the sparse matrix
.in order to make the sparsity structures of two supernodes the same. These supernodes can then h1,,

merged into one larger supernode. We use the same amalgamation approach for the block approach

as we did for the panel approach in a previous chapter.

In Figure 41 we show the average blocl|. operation sizes both before and after amalgamation It

is clear that amalgamation significantly increases the block operation grain size.

Before presenting performance comparisons, we first note that amalgamation does hayve a co•st

By introducing zeroes into the sparse matrix. the amount of floating-point work is increased T, he,

fair. the performance of the block computation after amalgamation should therefore b.e Compared

with the performance of the sequential computation before this extra work is introduceo, flowrevr

amalgamation also provides some benefit for sequential factorization, primarily related to ,npro~v,,,

use of the processor cache. We found that the bent-fit in fact outweighed the cost for the- anialgania-

tion strategy we employed on all benchmark matrices, with performance improvements ranging fr,,m

170 to 14%7, (sef, Table 31) for the true sequential method. Block mnethod performance, is theref,)r,,

CHAPTER 7. SPARSE BLOCK-ORIENTED FACTORIZATION17

.0 IwoId

L': GRIOleft

zi~~c GRD0 CSSTK15
* BCSTK15+ BCSSTK?6

* BCSTK16 BCSSTK17

BCSSTK8 iso BCSSTK29
aBCSSTK29

Bkock size Btock size

Before amralgarlnation Aflte am~aigamation

Figure 41: Average floating-point operations per block operation, before and after supernode amnal-
gamation.

compared to the performance of the true sequential method after amalgamation.

Figure 42 shows relative performance levels after amalgamation. The results indicate that anial-

gamnation is quite effective at reducing overheads. Performance roughly doubles for GRID IOU. wherc'

the average task grain size increases for B = 32 increases from 96 floating-point operations t.o 597

Performance increases for the other matrices as well. With only two exceptions, block method per-

formance is roughly 80% of that of a true sequential method for B = 32. Performance falls tff

somewhat when B = 24, and it decreases further when B = 16, but the resulting efficiencies are still

more than 70%.

Note that our chosen range of blocks sizes, 16 to 32, is meant to span the range of reasonable

Table 31: Supernode amalgamation results,

Supernodes P erformance improvement
Name IIbefore amalgamation I after amalgamation fortrueseq._method

I. GRID100 6,672 2.786 5
2, GRID200 26,669 11,243 67___________

*3. BCSSTK 15 1,295 525 17 17
4. BCSSTK 16 691 434 X

5- BCSSTK17 '2,595 1,622 ___________

6- BCSSTKI18 7,438 :3,727 7_____,7,______

7. BCSSTK29 31.231 1.193 IP

CHAPTER 7. SPARSE BLOCK-ORIENTED FACTORIZATION

A GRID1O0
SGRID200

-is. o, BCSSTKI5
+ BCSSTK16
x BCSSTK17
* BCSSTKIB

E E
o a BCSSTK29CT

a0 aGRID200
0 BCSSTK15
+ BCSSTKi6

20 it . BCSSTK17

W BCSSTKi8
o BCSSTK29

19 34 32 16 34 32

Block size Býoc• saze

Before amalgamation After amailgmation

Figure 42: Performance of a sequential block approach, before and after supernode amalgamation.
relative to a sequential left-looking supernode-supernode approach.

choices. Blocks that are staaller than 16 by 16 would be expected to lead to large overheads. Indeed.

performance was observed to fall off quite quickly for block sizes of less than 16. At the other end of
the spectrum, the marginal benefit of increasing the block size beyond 32 by 32 would be expected

to be small. This expectation was also confirmed by empirical results.

7.2.5 Block Decomposition Summary

This section has described a simple means of decomposing a sparse matrix into a set of rectangular

blocks. The performance of a method based on such blocks on a sequential machine is nearly equal

to that of a true sequential method. Of course, our goal here is not an efficient sequential method.

but instead an efficient parallel method. The next section will consider several issues related to the

parallelization of the above approach.

7.3 Parallel Block Method

The question of how to parallelize the sequential block approach described so far can he divided int,

two different questions. First, how will processors cooperate to perform the work assigned to t.hen)

And second, what method will be used to assign this work to processors" This section will atddrp,

CHAPTER 7. SPARSE BLOCK-ORIENTED FACTORIZATION I2!

these two questions in turn.

7.3 1 Parallel Factorization Organization

We begin our description of the parallel computation by assuming that each block will have •uviwi'

specific owner processor. In our approach. the owner of a block LIK performs all block updatv

operations with LIK as their destination. That is. we use a destination-computes approach. -ii
approach that was shown to have significant advantages over a source-computes approach In the

previous chapter. With this choice in mind. we present the parallel block fan-out algorithm II
Figure 43. The rest of this discussion will be devoted to an explanation of the algorithm.

The most important notion for the block fan-out method is that once a block LIK lI ,OMPfet

meaning that it has received all block updates and has been multiplied by the inverse of the diagonal

block, then LIK is sent to all processors that could own blocks updated by it. Blocks that could

be updated by LIK fall in block-row I or block-column I of L. When a block LIK is received
by a processor p (step 2 in Figure 43), processor p performs all related updates to blocks it owns

The block LUK only produces blocks updates when it is paired with blocks in the same column

K. Thus, processor p considers all pairings of the received block LIK with completed blocks it

has already received in column K (these blocks are held in set RecK.p) to determine whether the

corresponding destination block is owned by p (steps 10 and 11). If the destination Luj is owned bl

p (map[Ll] = p), then the corresponding update operation is performed (steps 12 and 13). Each

processor maintains a hash table of all blocks assigned to it. and the destination block is k.'ated

through this hash table.

A count is kept with each block (nmod[LiK]), indicating the number of block updates that still

must be done to that block. When the count reaches zero, then block LIK is ready to be multiplied

by the inverse of LKK (step 20 if LKK has already arrived at p; step 6 otherwise). A diagonal block

LKK is kept in DiagK,p, and any blocks waiting to be modified by the diagonal block are kept in

WaitK~p. The sets Diag, Wait, and Rec can be kept as simple linked lists of blocks.

One issue that is not addressed in the above pseudo-code is that of block disposal. As described

above, the parallel algorithm would retain a received block for the duration of the factorization FT

determine when a block can be thrown out, we keep a count ToRecK p of the number of blocks In

a column K that will be received be a processor p. Once IRecK,pI = ToRecK~p, then all blocks In

column K are discarded.

We note that a small simplification has been made in steps 11 through 14 above. For all blocks

Lij. I must be greater than J, a condition that is not necessarily true in the pseudo-code. rh,,
reader should assume that I is actually the larger of I and J, and similarly that J is the smaller ,f

t.ne two.

(CHA PTER 7. SPA RSE BLOCK-ORIENTED FA "TJ)RIZA FIOt;. SI

I. while some Lij with map[Lijj = MyID is not complete do
2. receive some LIA
3. if I A' /* diagonal block 'I
4. DiagKxAtID - LKK
5. toreach LUK E ýl'aitK MyID do
6. LJK .- LjRL-,K
7. send LUK to all P that could own blocks in

row J or column I
8. else
9. RecA,MyID - RecK ,yID U LIK }

10. foreach LUK E ReCK.MyID do
11. if map[Ltjj = MyID then
12. Find Ljj
13. L1 j - Ljj - LKLIK
14. nmod[L ji] - nmod[Ltj] - 1
15. if (nmod[Ltjj] = 0) then
16. if I = J then /* diagonal block */
17. Lij - Factor(Ljj)
18. send L., to all P that could own blocks in

column J
19. else if (Diagj,.fyD #@) then
20. Ljj - Lij L -;
21. send Lij to all P that could own blocks in

row I or column 1
22. else
23. WaiIJ .WyID - l`'aItJ.MfylD U {Ljj }

Figure 43: Parallel block fan-out algorithm.

CIHAPTER 7 SPA RSE BLOCK-ORIENTED rAC'TORIZATION 1311

7.3.2 Block Mapping for Reduced Communication

We now consider the issue of mapping blocks to processors Our general approach is identical to bh,,

approach we used for dense matrices. We assume that the proc,-ssors are arrangrd in a p x p 2-1)

grid configuration, with the bottom left processor labeled Pr. 0. and the upper right processor labeled

PP_- ! To limit communication. a row of blocks is mapped to a row of processors Similarly. a

column of blocks is mapped to a column of processors %e choose round-robin (listributions for bothIi

the rows and columns, where

map[Lij] = Prmodwp Jm.Ap,

Other distributions could be used. By performing the block mapping in this way. a block L iII

the sparse factorization need only be sent to the row of processors that could own blocks in row I

and the column of processors that could own blocks in column [. Every block in the matrix would

thus be sent to a total of 2p = 2v-P processors. Note that communication volume is independent of

the block size with this mapping; every block in the matrix is simply sent to 2\1`T processors.

Recall from the previous chapter that this block mapping strategy is appealing not only because

it reduces communication volume, but also because it produces an extremely simple and regular

communication pattern. All communication is done through multicasts along rows and columns of

processors. This pattern is simple enough that one might reasonably expect parallel machines with

2-D grid interconnection networks to provide hardware multicast support for it eventually. In the

absence of hardware support, an efficient software multicast scheme can be used. We will return to

this issue later in this chapter.

7.3.3 Enhancement: Domains

Before presenting performance results for the block fan-out approach. we first note that the method

as described above produces more interprocessor communication than competing panel-based ap-

proaches for small parallel machines. This is despite the fact that the block approach has much

better asymptotic communication behavior. To understand the reason, consider a simple 2-D k x k

grid problem. The corresponding factor matrix contains O(k 2 log k) non-zeroes. and the parallel

factorization of this matrix using a panel approach can be shown to generate O(k2 P) communica-

tion volume [24]. In the block approach. every non-zero in the matrix is sent O(x/•) processors, so

the total communication volume grows as O((k 2 logk)v"h). While the communication in the block

approach grows less quickly in P, for any given k it also has a larger 'constant' in front.

Recall that an important technique for reducing communication in panel methods was the use

of owned domains [4. 9]. Domains are large sets of columns in the sparse matrix (corresponding t,,

subtrees of the elimination tree of L) that are assigned en masse to a single processor By assigning

the columns of an entire subtree to a single processor. these columns can be factored without

any interprocessor communication, and the updates from all columns in a domain to subseqiiiut

CHAPTER 7, SPARSE BLOCK-ORIENTED FACTORIZATION ii,"

columns can also be computed without communication Ashcraft suggested [4] that domains fan bi
incorporated into a block approach as well- The basic approach is as follows. The non-zeroes within

a domain are stored as they would be in a column-oriented method. The domain factorization ts
then performed using a column method. The aggregate domain updates to ancestor columns atr-
computed column-wise as well. We use an efficient left-looking supernode-supernode method for

both. Once the aggregate updates have been computed, they are sent out in a block-wise fashion t,

the appropriate destination blocks.

Note that one benefit of these domains is that they reduce the number of small blocks in thi.
matrix, and thus they reduce related overheads. Recall that small supernodes are the main sotirc,

of small blocks. In a sparse problem, most small supernodes lie towards the leafs of the eliniinatinil

tree. where they are likely to be contained within domains.

One problem with the above approach to owned domains is that it introduces a *seam' in the
biock-oriented computation. The matrix is stored as columns within domains and as blocks outside
the domains. This seam can be avoided if the domain non-zeroes are still kept as blocks. Aggregation

of updates to ancestor blocks can be accomplished by creating 'shadow blocks' for all affected ancestor
blocks. The shadow blocks would have the same non-zero structures as the blocks they represent..

but they would be initialized to have all zero entries. The domain factorization would then be

handled in a block-oriented manner. Once a domain is complete, a shadow block wr'ild contain
the aggregate update from the domain to the corresponding destination block. The shadow blocks

could then be sent to the processors that own the corresponding real blocks, to be added as updates.

This approach produces a much cleaner although slightly less efficient factorization code. We will

prefer efficiency to elegance in this chapter, however. Performance results will come from a code

that stores owned domains as columns.

Of course, the owned domains must be carefully assigned to processors to avoid having some
processors sit idle, waiting for other processors to complete local domain computations. Geist and

Ng [201 described an algorithm for assigning a small set of domains to each processor so that the
amount of domain work assigned to each processor is evenly balanced. They considered domains in

the context of column-oriented parallel methods, but their approach also applies for a block-oriented

approach. All results from this point on use the algorithm of Geist and Ng to produce domains.

With the introduction of domains, the parallel computation thus becomes a three phase proresN

In the first phase, the processors factor their owned domains and compute the updates from these.
domains to blocks outside the domains. In the second phase. the updates are sent to the processrs

that own the corresponding destination blocks and are added into their destinations. Finally. thi,

third phase performs the block factorization, where blocks are exchanged between processors %tNil'

that these are only logical phases; no global synchronizations is necessary between the pha..,'s

Consider the effect of domains on communication volume in a block method for a 2-D) grid pr.,i,

tem. We first note that the number of non-zeroes not belonging to domains in the sparse matrix ,;w

CHAPTER 7. SPARSE BLOCK-ORIENTED FACTORIZATION 133

be shown to grow as O(k 2 log P), versus O(k2 logk) without domains. Total communication voluni,

for these non-zeroes using a block approach is thus O(k 2 v-fP log P) The other component of •oin-

munication volume when using domains is the cost of sending domain updates to their diestinatj,,n-

The total size of all such updates can be shown to be 0(k2), independent of P, so domain update

communication represents a lower-order term. Total communication for a 2-D grid problem i'k thu.,

O(k 2vT log P)

We should note that this communication figure is not optimal for block-oriented factorization. In

fact, communication volumes car, be reduced to O(k 2 ,X/-) through the use of a fan-both approach

[6). However, it is not at all clear that these improved communication figures can be obtained in a

simple, practical method.

7.4 Evaluation

This section evaluates the parallel block fan-out approach proposed in the previous section. The
approach is evaluated in three different contexts. First. we look at performance on a small-scale mul-

tiprocessor. Then, we consider performance on moderately-parallel machines (up to 64 processors).

using our multiprocessor simulation model and the Stanford DASH machine. Finally, we consider

issues for more massively parallel machines.

7.4.1 Small Parallel Machines

The first performance numbers we present come from the Silicon Graphics SGI 4D/380 multipro-

cesser. Parallel speedups are shown in Figure 44 for I through 8 processors. All speedups are

computed relative to a left-looking supernode-supernode sequential code, the sequential code that

gave the best overall performance. The figure shows that the block fan-out method is indeed quite

efficient for small machines. In fact, we have found that performance is higher than that of a panel

method on this machine, due to better load balance. Recall that the static task mapping scheme

that is used in a panel method causes some load imbalances. The block method assigns sufficiently

many blocks to each processor so that imbalances are small. We also note that the performance of

the block method is comparable to that of a highly efficient shared-memory panel code [40. 4 1] that

dynamically doles out tasks to processors and thus does not have load imbalance problems.

Speedups for the block method on 8 processors are roughly 5.5-fold, corresponding to absolute

performance levels of between 45 and 50 double-precision M FLOPS. Speedups are less than linear in

the number of processors for two simple reasons. First, the block method is slightly less efficient than

a column method. We believe this accounts for a roughly 20% performance reduction. Second. Ihhe
block method still produces some load imbalance. Program instrumentation reveals that processors

spend roughly 15% of the computation on average sitting idle. These two factors combine to give a

relatively accurate performance prediction.

CHAPTER 7. SPARSE BLOCK-ORIENTED FACTORIZATION

, GRIDloo
.5_ G l RID200

So BCSSTK1 5

e,. + BCSSTKi6
x BCSSTKI 7
* BCSSTKi8
o BCSSTK29

2 4 4

Processofs

Figure 44: Parallel speedups for block fan-out method on SGI 4D-280, B = 24

7.4.2 Moderately Parallel Machines

We now evaluate the parallel performance of the block fan-out approach on machines with up to 6-I

processors, using both the multiprocessor simulation model described earlier and also the Stanford

DASH machine. We also discuss issues of communication volume.

Simulated Performance

To get a feel for how a block approach performs on larger parallel machines, Figure 45 shows

simulated processor utilization levels for between 4 and 64 simulated processors, using a block size

of 24. It is clear from the figure that the block approach exhibits less than ideal behavior as the

machine size is increased. On 64 processors, for example, utilization levels drop to roughly 40V J7

Further investigation reveals that the primary cause of the drop in performance is a progressive

decline in the quality of the load balance. Figure 46 compares simulated performance for matrices

BCSSTK15 and BCSSTK29 with the best performance that could be obtained with the same block

distribution. The load balance performance bound is identical to the maximum load bound that we

used for panel methods; it is obtained by computing the runtime that would be required if there

were no dependencies between blocks and if interprocessor communication were free. The difference

here is that the other component of the maximum load bound, load efficiency, is unimportant sMuic,

the vast majority of the computation makes good use of the cache and thus obtains near-perfrt

efficiency.

The quality of the load distribution clearly depends on the method used to inap hlcks t,,

CHAPTER 7 SPARSE BLOCK-ORIENTED FAC'TORIZATION I:;5

2

5

0

A GRID100
C GRID200
o- BCSSTK15
* BCSSTK 16

* BCSSTKI7
SBCSSTKi8

2 o BCSSTK29

I I _ 1a I 32

Processors

Figure 45: Simulated parallel efficiencies for block fan-out method, 8 = 24.

Simu~atecl peeiorma-nce Simulated performance
I. . Load balance "3 Load balance

40 4*

I I I• I
1632 0 4 88 32 6

Processors Plocessors

BrSSTK15 BCSSTK29

Figure 46: Simulated parallel performance, compared with load balance upper bound (8 = 24 1.

CHAPTER 7 SPARSE BLO(CK-OHIENTEf fAt' 'FORIZATIO(N

s 66CS T15-

o SCS 1 BCSSTK29

D DENSESO0 0. DENSE1O6O
0 40

Processors Processrs

BCSSTK 1S BCSSTK29

Figure 47: Parallel utilization upper bounds due to load balance for BCSSTKI5 and BCSSTU.29,
compared with load balance Lpper bounds for dense problems (B = 24). In both plots, sparse ald
dense problems perform the same number of floating-point operations.

processors. Recall that we use a very rigid mapping strategy. where block LtJ is assigned to., processor

Pimodp Jmodp. One possible explanation for the poor behavior of this strategy is that. it does io,!

adapt to the structure of the sparse matrix; it tries to impose a very regular structure on a matrix

that is potentially comprised of a very irregular arrangement of non-zero blocks.

While the mismatch between the regular mapping and the irregular matrix structure certainhl

contributes to the poor load balance, it is our belief that a more important factor is the wde

variability in task sizes. In particular. since a block is modified by some set of blocks to its loft

blocks to the far right in the matrix generally require much more work than blocks to the ief't

(more accurately, blocks near the top of the elimination tree require more work than Hocks near th,

leafs). Furthermore, since the matrix is lower-triangular, the number of blocks in a column decreases

towards the right. The result is a small number of very important blocks in the bottom-right corner

of the matrix.

"To support our contention that the sparse structure of the matrix is less important than th,

more general task distribution problem, Figure 47 compares the quality of the load balance obtainod

for two sparse matrices, BCSSTK15 and BCSSTK29, to the load balance obtained using the saine

mapping strategy for a dens(: matrix. The curves show the maximum obtainablo processor ut ilizat 1-11

levels given the block mapping. The dense problems are chosen so as to perform roughlk the l atri,

number of floating-point operations as the two sparse problems

"Note that the load ,alanc,, can be improved by moving to a sraller blo(-k size. tih, r,.ait i

CHA PTER 7. SPA RS• BLO('K-ORIEN ýI) A('CTORIZATI()N i

more distributable blocks and making the block distribution prblIn eLsier Hlow,-vr a;v ,u -

earlier, smaller blocks also increase block Iverheads For the larger berichiunork ticirt- ii:atric,-,

decreasing the block size from B = t2- to H = 6 increaes simulated parallel ,.'ficvmyicit.,> r,' h

15%Yc for P = 64. A block size of le,,s than 16 further improves the load batane-- but a;-his, IA,,4,r

performance due to overhead issues

The general conclusion to be drawn from these simulation results is siriply that it I, dli•itt it T,

achieve high processor utilization levels on large machines using relativel. sioall prt,,lmvins P1....hL,

avenues to explore in order to improve performance include the us-, of a more dyriaimc ta..sk :VsiIAl-

ment strategy or a more general function for mapping blocks to processors This mattter will r,-iuir,

further investigation.

Communication Volume

So far. our analysis has assumed that parallel performance is governed by two costs tho .costs ,f ,N-

cuting block operations on indiv'idual processors and the latencies of communicating blocks between

processors. Another important, although less easily modelled component of parallel performance is

the total interprocessor communication volume. Communication volume will determine the anriunt

of contention that is seen on the interconnection network. Such contention can have severe pIerf,,r-

mance consequences, and can in many cases govern the performance of the entire computation ts,-

[431, for example).

Ratt.or than try to integrate these costs into our simple performance model, we instead loo,:k

at interpwocessor communication in a more qualitative way. To obtain a general idea of how much

communication is performed. Figure 48 compares total interprocessor communication volune with

total floating-point operation counts for a variety of sparse matrices and machine sizes This figur-,

shows the average number of floating-point values sent by a processor divided by the number 4

floatndg-point operations performed by that processor. Sustainable values will of course depend in

the relative comp,.tation and communication bandwidths of the processor and the processor inter-

connect in the parallel machine. Current machines would most likely not have trouble supporting

the 0.025 ratio (40 FP ops per word of communication) seen for 16 processors on these matrics

The 0.05 ratio (20 FP ops per work of communication) on 64 processors would be inure, iffict•il i

support.

Real Machine Performance

Let use now consider how these simulation numbers translate into achieved performance ,i III,

Stanford DASH machine. We first compare predicted speedups with achieved speedups for marye.

BCSSTK15 and BCSSTK29 in Figure 49 The block size for both is 2,4 The figure shows that IASIl

performance Is significantly below simulated performance. The main reason is that commimuicat i-,

costs are assuimed to be hidden from the processors in the simulation. while they are noit lI•iddbb

CHAPPTER 7. SPARSE BLOCK-ORIENTED4VTO)IZAII)1

0
a0/

~ 0.10GRIDiOO

2 " GRID200

o SCSSTK15

S/2

O• • -- Simulatedspeeeudup

Cs

~~~~~~D S speedupup• 
.

Y,:- o , -

12 -12

4 4

0 4 a 12 Is 20 at4 20 32 311 40 0 4 @ 1 11• 20 24 n 2J M1 44

00

B l o c k• s iz e 
B lc r *K s -ie

BCSS7K15 
BCSSTK N9

Figure 49ý Parallel speedups for block approach for B('SSTK15 and B('SS'I'K29)



CHAPTER 7. SPA RSE BLOCK-ORIENTED F4ACTORIZATION 1,

,% GRID100
CL GReD2oo

•aoo - BCSSTKi5
x BCSSTK17
x BCSSTK18 • .. •

-ý" BCSSTK29

4 4+ 1Z Is XG 2A a 32 3 40

Processot5

Figure 50: Parallel speedups for block approach on the Stanford DASH machine

in the DASH machine. The cost of this lack of latency hiding is substantial. On ,40 processors

for example. the processors perform roughly one word of communication for every 20 floating-point
operations for both matrices. This represents a substantial cost to the processors. siarv a word

of communication costs roughly 50 cycles while a floating-point operation costs less than 41 v'yt,

These communication costs do not account for the entire difference between simulated and achici,,,d

performance. They do account for the majority of it, though.

Looking at parallel speedups across a wider range of sparse problems gives the results in Figure .5)

For each data point, we report maximum speedups when using a block size of either 2.1 or 32 A

choice of 32 typically gave better results for fewer than 32 processors, while a block -!ize of 1.1 wa,'
better for 32 or more. In either case, the performance differences between the two choices wf,,r,

generally less than 10%.

For reasons discussed earlier in this section. the obtained parallel performance is relatrvp1 low.
with speedups on 40 processors ranging from 12 to 18.

Comparison with Panel Method

To put the results for the block-oriented method into better perspective, we now ,cotlpare themn

to the corresponding results for a panel method. Figure 51 shows relative coimlunicattorl vIluti

Interestingly, the block approach provides few communication-volume bnefits (n 614 prcer-

While the growth rates, O(P) for panels and O(,/ Plog P) for blocks, favor the block aptproar-h

constants make these rates less relevant for small P

An interesting thing to note here is that relative communication is quite a hit highr for th,. w,



CHAPTER 7. SPARSE BLOCK-OWENTED FA•TORIZATION

EY

i4

SGRIDloo

+ BCSSTK16
x BCSSTK1 7
im BCSSTK18
o BCSSTK29

= , . .... .. .II , I

PrOCessOrs

Figure 51: Communication volume of block approach. relative to a panel-oriented parallel multi-
frontal approach.

grid problems than for the other matrices. The reason is that the column multifrontal approach does

very well communication-wise for sparse matrices whose elimination trees have few nodes iowards

the root and instead quickly branch out into several independent subtrees, The two grid problems

have this property. The block approach derives no special benefit from this property.

Figure 52 compares block performance to panel performance. using both the DASH machine and

multiprocessor simulation. The figure shows that the block approach does indeed provide higher
performance on moderately parallel machines than the panel approach. The simulation predict.s

performance improvements of roughly 50% on 40 processors. while improvements of between 10'7,

and 40% percent are observed on the DASH machine. We believe that the reason performance

differences are larger in the simulation is again because communication costs are not being hidden

on the DASH machine. We previously indicated that these costs are substantial for large numhrs

of processors, and we also showed that the costs were comparable for the panel and block met hods

Since this large communication cost is shared between the two methods, the performance differnces,

between the two are decreased.

Summary

To summarize this subsection, we note that our block fan-out approach provides good pirforman,',-

for moderately-parallel machines, although parallel speedups are well below linear in the numb,,r 4

processors for the matrices we have considered. An important limiting factor is the haad halaic,,

that results from our quite rigid cookie-cutter block distribution scheme. We also find that be 1lwk



CHAPTER 7. SPARSE BLOCK-ORIENTED FACTORIZATION ii

S, I
U0

C zoo

E E0 /
1 a.

0

CC

z~ni GR1D10

- ;1 GI GRID200
Co ~GR1020o CSTi

* BCSSTK15
o - + BCSSTK + CSSTK17

x BCSSTKx7 SBCSSTK1 * BCSSTK !8
* BCSSTK17
0 BCSSTK29

I__ I__ ?__ I____ _ I_ _ I__I__I __I ___ __I I I
0 4 6 12 16 20 34 A 32 3 40 4,0 S2 9 o0 60 0 4 , t2 If X 34 A 32 ,8 40 U 4 2 S4 0 •4

Processors Processors

DASH Simulated

Figure 52: Performance of block approach relative to performance of panel approach

approach produces comparable amounts of interprocessor communication traffic to a panel approach

on 64 or fewer processors. Comparing the overall performance of a block approach to that of a pan-l
approach, we find that the block approach has a small performance advantage. The load balance-

problems with the block approach are more than made up for by its better data reuse: the block

approach performs virtually all computation in the form of B by B dense matrix multiplications.

whereas the panel approach is forced to use narrow panels. The performance advantage of the block

approach over the panel approach would be expected to be somewhat larger on a machine that

hides interprocessor communication latencies from the processors. On the DASH machine, sinc,

communication volumes are comparable for both methods and the costs of such communication ar,"

considerable, the differences between the methods due to other sources are diluted

7.4.3 Massively-Parallel Machines

Having concentrated on issues of efficiency on smaller machines in the first part of this sectioTn. w,

now turn our attention to three issues that will be important for very large parallel machines First.

we look at available concurrency in the problem. In other words, we look at how many processors

can be productively used for a particular problem. Next we turn to the issue of per-processor storagr

requirements. and we consider how they grow as the number of processors and the problem •iz- is

increased. A common assumption for large parallel machines is that each processor will -,'ntaint

sore : constant amount of memory. Thus. it would be desirable for the amount of storage reoquir,,

per processor to remain constant. Finally. we consider interprocessor communication issuos ()iir

discussions will use 2-D grid problems aW example's



CHAPTER 7, SPARSE BLOCK-ORIENTED P(CTORIZATION 14-'

Before further discussing these issues, we should first explain our goals The primary adtantap•
of a block approach over a panel approach for a massively parallel machine is that it • f,,Jss 111:1,
concurrency and thus allows more processors to cooperate for the same sparse problem rFr a kl A
2-D grid problem, for example, the column approach can be shown to allow 0(k) processr- ,

participate. By some measures, a block approach can use 04k2 ). Our goal is to deterrunii whether

the use of O(k2) processors is a realistic goal. and to understand the difficulties that might h,
encountered in trying to reach this goal

Concurrency

One important bound on the parallel performance of a computation is the length of the critical pat h
Determining the critical path in a computation requires an analysis of the dependencies between t h,
various tasks in that computation. Such an analysis for block-oriented sparse ('holesky factorizatiur
reveals that the length of the critical path is proportional to the height of the elimination tre,-
assuming some constant block size. For a 2-D grid problem, the elimination tree can be shown to

have height 3k. Thus, in the best case the O(k') work of the entire factorization can be performied
in 0(k) time. Consequently, at most 0(k 2 ) processors can be productively applied to this problem

This figure is consistent with our goals for the block approach.

Storage

We now look at the issue of how per-processor storage requirements grow as the size of the niachire
and the size of the problem is increased. We first note the obvious fact that the processor 1miu.t
store the portion of the matrix assigned to it. If the factorization is performed on P processors arid
the problem being factored is a k x k grid problem, then each processor must store 0(1 I non-
zeroes. Keeping per-processor storage requirements constant would thus require that the number
of processors grow slightly faster than k2 . Since the critical path analysis showed that only 0(k" 1
processors can be used productively for this problem, we must resign ourselves to a slow growth ratre
in per-processor storage.

Now consider the storage requirements of the auxiliary data structures that a processor rmi,t

maintain. One important set of auxiliary data is the per-block information. An example is the coUout
of how many times a block is modified. Another is the particular row and column of processors t,,
which a particular block is sent when complete. This data adds a small constant to the size of each
block, and consequently it represents a small constant factor increase in overall storage.

Another important set of auxiliary data is the column-wise data, One example is the arrival
count information, which keeps track of how many blocks in a particular block-column a process,r
will receive. Since the number of block-columns in the matrix is k2. this data structure wild
occupy O(k2) space per processor if every entry were kept Fortunately, only O(0/P) of th,',,
entries must be stored. The reason is as follows. If the factorization work is distributed ,'enk



C'HAPTER 7 SPARSE BLOCK-ORIENTED FAC'TORIZATION 1 1

among the processors, then the work performed per process,,r is U(k:'/,P) Since a r hi--k',.l,, ,

is only retained in a processor if it participates in some useful work. clearly the nunmber ,f -tich

retained blocks and thus the number of arrival counts that must be stored is als, Ok 1.'tI P W.'- ant

keep a hash table, indexed by column number, of all non-z-.o arrival counts When a blok arriJ,.-

the corresponding arrival count is located and decremented Note that not all blocks that arroy, ;t•

a processor participate in an update on that processor If no arrival count is found f,)r the lt I,'k

column of an arriving block, then the block is immediately discarded. Sirmilar hash strucrtunre,..n

be used for the other column-wise data structures.

Regarding per-processor storage growth rates, note that if P grows as k2 , then the pr.-,rc,.,

matrix storage costs grow as O(log k) while the arrival count storage costs grows as 0(4k3 P) = ()(k,

Fortunately. the O(k) term ha,, a very small constant in front of it. so this term will not he particularb,

constraining for practical P. However, asymptotic per-processor storage requirements will grow %ith

P.

Commnunication

A crucial determinant of performance on massively parallel machines is the bandwidth of the proces-

sor interconnection network. In order to obtain a rough feel for whether the bandwidth demands oif
the block fan-out method are sustamable as the machine size increases, we look at these demands in

relation to two common upper bounds on available communication bandwidth, in a manner similar

to that used by Schreiber in [43]. The two upper bounds are based on bisection bandwidth and total
available point-to-point bandwidth in the multiprocessor. We consider a 2-D mesh machine organi-

zation, which is in some sense a worst case since it offers lower connectivity than most alternative

organizations.

A bisection bandwidth bound is obtained by breaking some set of point-to-point interconnection

links in the parallel machine to divide it into two halves. Clearly, all communication between

processors in different halves must be travel on one of the links that is split. The bisection bandwidth
bhund simply states that the parallel runtime is at least as large as the time that would be required

for these bisection links to transmit all messages that cross the bisector.

In the case of the block fan-out method applied to a 2-D grid problem, recall that O(k 2 log P)
messages are sent, and each is multicast to O(,'fP) processors (a row and column of processors).
Figure 53 shows an example mesh of processors, an example bisector, and the communication pat-

tern that can be used to riulticast a message. For any simple bisector, a multicast to a row and
0 column of processors crosses that bisector once or twice. Thus, total traffic across the bisector is

O(k 2 log P). This traffic must travel on one of O(v/P) communication links in the bisector, and
this communication occurs in the O(k 3 /p) time required for the factorization. If we assuini that

communication is evenly distributed among the bisector links, then communication per bisector link

per unit tim-e is 0( k ) O ( ). If P grows as k2 , communication per link per unit timepot urlit time - T, O( 4 Pk/"



('HAPTER 7. SPARSE BLOCK-ORIENTED VA4TOHIZATION 4.

Bisector

//

Source

Figure 53: Communication pattern for row/column multica&t.

is thus O(log P). Since the amount of data that can travel on a single link per unit tinme is constant.

this growth rate represents a small problem. The number of processors P must grow slightly slower

than k2 in order to keep message volume per link constant.

Another common communication-bas,-d bound on parallel performance is the total amount 4f

traffic that appears on any link in the machine, expressed as a fraction of the total number of links

in the machine. For our example, there are O(k2 iog P) multicasts, each of which traverses (00 v1'i

links. The number of links in the machine is O(P), and again this communication occurs in 0Ok 3 /P)k~ v t l t ' , - r 0 • ' K P ) I If P is (.) C ). ,,

time. Thus, global traffic per link per time unit is 0( -k21ioa,,P) or0O( k

obtain O(log P) traffic per link, which is identical to the bisector traffic.

We should note that the preceding arguments have said nothing about achieved performance

Demonstrating that certain performance levels can actually be achieved would require a detailed

analysis of the structure of the sparse matrix, the way in which the factorization tasks are mnapped

to processors, and the order in which these tasks are handled by their owners. This would certainly

be a daunting task. This discussion has simply shown that the approach is not constrained awa,'

from achieving high performance by any of the most common performance bounds.

7.4.4 Summary

To summarize our evaluation, we have found that the block fanw-,ut method is quite, alpealiii1

across a range of parallel machines. Overheads are low enough that the method is quite effecti, ' f,,r

small parallel machines. It is also effective for moderately parallel machines, although pjrforirieanr,



CHAPTER 7 SPARSE BLOCK-ORIENTED FAC'TORIZATION 15

somewhat limited by the quality of the computational load balance For maissi •el parallel machums,

we found that the approach is not perfect. Per-processor storage requirements grow with the numbner

of processors. Bisection bandwidth considerations also limit the number of processors t) below ideal

However. these constraints are mild enough that the block fan-out approach appears to be quit,

practical even for very large P

7.5 Discussion

At this point in this chapter. it would be desirable to choose a particular parallel niethod as being

preferable to the other. The previous section provided some comparative information, but it. did nor

address several more general and more practical considerations. Let us now consider some of these

issues.

The first thing to note is that the block approach has huge asymptotic advantages over a panel

approach for larger numbers of processors. The concurrency and communication growth rates so

greatly favor the block approach that there is no question that it will eventually provide much

higher performance. We therefore concentrat,, on issues that will be important for moderately

parallel machines.

One important advantage of a block fan-out approach is its very regular communication pattern

Blocks are multicast to a row and column of processors. In contrast, the multifrontal panel approach

multicasts a panel to an arbitrary subset of the processors. The block communication pattern is

certainly easier to perform efficiently.

Another advantage of the block approach is its extremely simple and efficient computational

kernel. High performance for this method simply requires an efficient dense matrix-matrix multipli-

cation kernel.

One disadvantage of the block approach is the difficulty of balancing the computational load

While the panel approach did have some load balance problems, they were not nearly as severe

Another potential disadvantage of a block approach is the less natural data representation it

uses. Sparse matrices are decidely much easier to represent in terms of columns (or rows) of non-

zeroes. Our hope is that the data representation in the Cholesky factorization routines can be hidden

from the application by encapsulating the parallel factorization as a library routine that is accessed

through high-level data manipulation routines. Since sparse Cholesky factorization is typically u.e,,d

to solve sparse linear systems, the output of the factorization would be a vector z such that Ar = b

The application would hopefully never have to access the factor matrix.



CHAPTER 7. SPARSE BLOCK-ORIENTED FA CTORIZATION i16

7.6 Future Work

While this chapter has explored several practical issues related to parallel block-oriented factoriza-

tion, it also has brought up a number of questions that will require further investigation. Foreonei

among these is the question of whether the load balhnce could be significantly improved \%V, are
currently investigating more flexible block mapping strategies.

Another interesting question concerns the choice of partitions for the 2-D decomposition Recall

that our partitions are chosen to contain sets of contiguous columns from within the same superno.t,

Ashcraft has shown [4] that by choosing columns that are not necessarily contiguous, it is often

possible to divide the sparse matrix into fewer, denser blocks. While our results indicate that the

simpler approach is quite adequate, we are currently looking into the question of how large the

benefit of a more sophisticated approach may be,

We also hope to compare the block fan-out approach we have proposed here with the block

multifrontal approach proposed by Ashcraft [4]. One thing we are certain of is that the block fan-
out method is much less complex. So far, we have not discovered any significant advantages to a

multifrontal approach. but the issue requires further study. We also hope to investigate a block

analogue of the fan-in method.

Once a matrix A has been factored into the form A = LLT. the next step is typically the solution
of one or more triangular systems Ly = b, where b is given. An issue that we have left unaddressed in
this chapter is the efficiency of this backsolve computation when L is represented as a set of blocks

Our belief is that this backsolve will be more efficient than the backsolve for a column representation.
but further investigation will be required to fully answer this question.

Finally, we note that sparse Cholesky factorization requires several pre-processing steps. A block-

oriented representation would require new implementations of many of these steps (particularly the

symbolic factorization). It will be interesting to see whether it will be possible to perform these
steps as efficiently on a parallel machine when using a block framework as opposed to a column

framework.

7.7 Related Work and Contributions

Let us now briefly consider how our work in this chapter relates to existing work. One obvious set

of related work discusses the use of block-oriented methods for dense matrix computations The
block fan-out method we describe is in many ways a sparse matrix analogue of the parallel denseý

destination-computes Cholesky factorization method described in [3]. |!owe~er. it, should be clear
to the reader that our method represents a non-trivial extension of this previous work. Sparse

matrices introduce a variety of complications. including issues of how to decompose the matrix int,
reasonable blocks, how to determine what blocks are affected by a block, and how to determine when

a processor can discard a received block. that ar, not present in dense methods.



CHAPTER 7. SPARSE BLOCK-ORIENTED FACTORIZATION 141

We should also note that we are not the first to suggest the use of a block-oriented formulation

for parallel sparse Cholesky factorizatior. Other formulations have been suggested in [4] and 45i'

One crucial difference betwe-n our work and this other work is that we have described the detaik

of an extremely practical approach. This other work has described methods that we consider t,
be too complicated to ever be practical. The other important difference between our work and

previous work is that we have produced the first high-performance im, . wentation and we have

done the first detailed performance evaluation. We have demonstrated that a block representati,1,n

does not severely limit performance, that an efficient parallel method is not all that complicated to

implement, and we have provided communication volume and achieved performance comparisons

against alternative parallel methods (panel methods). Previously, the only implementation was that

of [4]. which provided results from a relatively slow parallel machine (an iPSC/2) and provided little

comparative information.

One final contribution of our work comes from our extensive use of performance modelling to

understand the important factors affecting parallel performance. In doing so, we were able to identify

loaci balance and interprocessor communication costs as important limiting factors, and we were able

to quantify the effects of each of these factors.

7.8 Conclusions

The results of previous chapters have shown that panel methods are inappropriate for sparse

Cholesky factorization on large parallel machines. This chapter has considered the natural al-

ternative, a 2-D or block matrix decomposition. Our focus has been on answering the question of

whether such a decomposition is truly practical. We described a parallel block algorithm that is

both practical and appealing. The primary virtues of our approach are: (1) it uses an extremely

simple decomposition strategy, in which the matrix is divided using global horizontal and vertical

partitions; (2) it is straightforward to implement; (3) it is extremely efficient, performing the vast

majority of its work within dense matrix-matrix multiplication operationsw (4) it is efficient across

a wide range of machine sizes, providing comparable performance to that of efficient panel methods

on small parallel machines and better performance on larger machines.



Chapter 8

Conclusions

Machines organizations are continually evolving. Algorithms must evolve as well to make good use

of these machines. This thesis has looked at sequential and parallel sparse Cholesky factorization

on machines with hierarchical memory organizations, a machine organization that is becoming more

and more important.

On sequential machines with a hierarchy of caches and main memory, it is important to reuse data
in the fa-ter levels of this hierarchy to avoid the long latencies of cache misses. This thesis performed

a careful examination of the performance of three important approaches to the computation. left-

looking, right-looking, and multifrontal. Our work is the first to evaluate all these methods in a

consistent framework. We showed that each could achieve significant data reuse by exploiting the

supernodal structure of the sparse factor. The performance of the methods benefited greatly from

such reuse. Roughly three-fold performance improvements were observed for two modern sequential

machines on which the evaluations were performed. We also found that when these methods were

expressed in terms of supernodes, the performance differences between them effectively disappeared

Conventional wisdom had previously been that the methods were quite dissimilar.

On parallel machines, data reuse is even more crucial. Processors must reuse data not only to

avoid the latencies of cache misses, but also to avoid saturation of shared resources, including shared

memory modules and the processor interconnection network. We proposed a panel multifrontal

method that achieves data reuse by distributing sets of adjacent columns (panels) among processors.

We showed that this approach provides two to three times the performance of the existing column

multifrontal method, thus demonstrating that our method is quite valuable for improving parallel

performance. However, we also found that the method provides relatively low parallel speedups

on larger machines. Using performance modelling and parallel machine simulation, we performed

the first detailed investigation of the reasons for achieved performance. We demonstrated that

this low performance was quite easily understood in terms of simple upper bounds on realizable

performance. These methods do not expose sufficient concurrency in sparse factorization problems

148



CHAPTER 8. CONCLUSIONS IT,

and they produce too much interprocessor communication volume.

T overcome these problems, we proposed a sparse factorization method that distributes rectarl

gular sub-blocks of the sparse matrix among processors. "% bile such an approach has the potentlal

to be much more complicated than a column approach, the specific method we propose is actually

quite simple. It uses an extremely straightforward matrix decomposition, it performs very regular

interprocessor communication, and processors maintain simple data structures to determine how t,

act on received blocks. We demonstrated that this block method has large asymptotic advantages

over panel methods for large parallel machines, both in problem concurrency and in irlerproces-

sor communication volume. By presenting performance results from the first high-performnanc,

block implementatioa, we also showed that this approach provides higher performance than panel

methods even on moderately parallel machines. thus demonstrating that the block method can be

implemented efficiently.

Obtaining high performance for the sparse Cholesky factorization computation has historically

proven to be an extremely difficult problem, with the only real successes coming from expensive

vector supercomputers. This thesis has demonstrated that much less expensive machines, sequential

and parallel machines with hierarchical memory organizations, can and do provide high perfor-

mance if the computation is blocked for the memory hierarchy. This thesis has provided a detailed

investigation of the crucial issues for performing this blocking.

Regarding future work, one obvious area for future @xploration would be the creation of a scalable

library for parallel sparse Cholesky factorization. We believe our work on block-oriented factorization

could form the foundation for a 'black box' method that provides good performance on a wide range

of parallel machines. One potentially challenging issue for such a library would be the design of the

interface between the application program and the sparse system solver. The interface would have

to be general enough so that it could be used by a wide range of application programs. It would

also have to be high-level enough so that the application program would not have to be intimately

familiar with the data representation and data placement done inside the library. At the same tinie,

it would also have to be efficient enough so that passing the matrix between the application and the

parallel library would not become the bottleneck in the factorization.

Another potentially interesting area for future work would be an investigation of the use of

similar blocking techniques for other sparse matrix methods, such as sparse QR and sparse LI

factorization. While the techniques developed in this thesis would not be directly applicable to,

other sparse problems, it may be possible to apply them with minor modifications to obtain similar

benefits.

Another interesting topic is the question of how our work on sparse Cholesky factorization would

apply to preconditioned iterative methods that rely on some form of Cholesky factorization fcr

their preconditioning. Important examples include block diagonal factorization and incomplete

Cholesky factorization in the conjugate gradient method. It would be interesting to consider the



CHAPTER 8. CONCL I! SIONS 15o

tradeoff between the work required to perform the partial ('holesky factorization, the ejt•i•ienc)f

the resulting computation, and the numoer of iterations the iterative method requires to conmwrg,

Finally,. it w',uld be interesting to consider in more detail the implications of our results for an

extremely important application, sparse Cholesky actori7ation, on the design of computer architec-

tures, particularly parallel machine architectures. Machines should certainly be built with an o-,-

toward providing high performance on real programs. Important questions to be answered are How

much memory should each processor have' How many processors can share a single mneniory" flotw

much interprocessor commun:cation bandwidth should be provided? How large a disparity between

processor and memory speeds can be tolerated? Our work on sparse Cholesky can provide important
insights for designing the next generation of parallel machines



Bibliography

[1] Amestoy. P.R., and Duff, I.S. . 'Vectorization of a multiprocessor multifrurtal cod,,- lir, ?21z.

lional Journal of Supercomputer Apphcatons. 3:41-59. 1 9•9.

[2] Anderson. E.. Bai, Z_ Bischof, C., Demmel. J . Dongarra. J , Du ('roz J (,reribauri A

Hammarling, S., McKenney. A., and Sorensen, D ., LAPACK A portable linear algebra hbr;ar•

for high-performance computers". Proceedings of Supercompding '90, NoVetnber, 1990

[3] Anderson. E., Benzoni, J.. Dongarra. J.. Moulton, S. Ostroucho". S.. Tourancheau, B, and

van de Geijn. R., "LAPAC K for distributed memory architectures: progress report". Parallel

Processing for Scientific Computing, Fifth SIAM Conference. 1991,

[4] Ashcraft. C.C., The domain/segment partition for the factort.atzon of sparse symmetric p,,,itiz

definite matrices, Boeing Computer Services Technical Report ECA-TR-IM N ovember. 1990,

[5] Ashcraft, C.C., The fan-both family of column-based distributed Cholesky factori:ation al/q-

rithms, in Workshop on Sparse Matrix Computations: Graph Theory Issues and Algorithrio

1992.

[6] Ashcraft, CC., A taxonomy of distributed dense L U factorization methods. Boeing Computer

Services Technical Report ECA-TR-161, March, 1991.

[7] Ashcraft, C.C., A vector implementation of the multifrontal method for large sparse symmftric

positive definite linear systems, Boeing Computer Services Technical Report ETA-TR-51. MaŽ

1987.

[8] Ashcraft. C.C., Eisenstat. S.C.. and Liu. J., "A fan-in algorithm for distributed sparse nuwori-al

factorization". SIAM Journal on Scientific and Statistical Computing. 11(3):593-599, 1990.

[9] Ashcraft, C.C., Eisenstat, S.C.., Liu, J.L., and Sherman, A-H, A comparison of threr ,ioltrii

based distributed sparse factorizatioa schemes, Research Report YALEV'/C•S/HR-Si. ( im

puter Science Department. Yale U7niversity, 1990.

151



BIBLIOGRAPHY

[10] Ashcraft. C C.. and Grimes. R ;., "-The itifluence of retlaxe•d supernmde parntiwn,, al 1h I• d-.

tifrontal method", ACM Transactions on tfathernatzcal "oftware, 15 291-309 19 .S9

II Ashcraft. (' C.. Grimes, R.G., Lewis. J.(;.. Pevton. B W , and Sinmon. 1t D 'HeDci;i , i r*•r,

in sparse matrix methods for large linear systenis" International Journal of .ý'uptr?- OrriTuu"Y

Applications, 1(4); 10-30. 1987

[12] Carr, S.. and Kennedy. K. "'Compiler blockability of numerical algorithms"' Procrfzhiqi, of

Supercomputing '92,. November, 1992.

[13] Davis. H.. Goldschmidt, S., and Hennessy, J., "'Multiprocessing simulation and iracing using

Tango". Proceedings of the 1991 lnternational Conference on Parallel Processing. August. 1991

[14] Dongarra, J., Du Croz. J.. Hammarling. S.. and Duff. I. "'A set of level 3 basic linear algebra

subprograms". A4CM Transactions on Mathematical Software. 16(l). 1-17. 1990

[15] Dongarra, J.J., and Eisenstat, S C.. "Squeezing the most out of an algorithm in C'RAY FOR-

TRAN", ACM Transactions on Mathematical Software. 10(3); 219-230, 1984

[16] Duff, I.S., Grimes, R.G., and Lewis, J.G., -Sparse Matrix Test Problems", ACM Transactions

on Mathematical Software, 15(1): 1-14, 1989.

[17] Duff. I.S., Reid, J.K., "Ihe multifrontal solution of indefinite sparse symmetric linear ,jua-

tions". ACM Transactions on Mathematical Software, 9(3): 302-325, 1983

[18] Fox, G., et al, Solving Problems on Concurrent Processors: Volume I - General TechnzqutS "1n71

Regular Problems, Prentice Hall. 1988.

[19] Gallivan, K., Jalby, W., Meier, U., and Sameh, A., "Impact of hierarchical memory systems on

linear algebra algorithm design", International Journal of Supercomputer Applicatzons. 2. 12-4ý.

1988.

[20] Geist. G.A., and Ng, E., A partitioning strategy for parallel sparse Cholesky factort-atzon. Tech.

nical Report TM-10937, Oak Ridge National Laboratory, 1988

[21] George, A., Heath, M., Liu, J., and Ng, E., Solution of sparse poszttve definite systems on a

hypercube, Technical Report TM-10865, Oak Ridge National Laboratory, 1988.

[221 George, A., Heath, M.. Liu, J. and Ng, E., "Sparse Cholesky factorization on a local-rnrIn],ry

multiprocessor", SlAM Journal on Scientific and Statistical Computing'. 9:327-340. 198S

[23] George, A., and Liu, J., Computer Solution of Large Sparse Posttie Definite Systems. Prentw',.

Hall, 1981.



BIBLIOGRAPHY I ",,

[241 George, A.. Liu. J. and Ng, E.. "'tlmnimnication results tfor araIkl sparse (Chlesk,. f,"io tia-

tion on a hypercube", Parallel Computing, 10 2S7-29. [19S9

[25] George, A.. Liu. J.. and Ng. E., U'ser's guide for .tPARS.4PAA' Waterloo sparst linear tquations

package. Research Report CS-78-30

[261 Lam, M.. Rothberg, E.. and Wolf, M.. "The (ache Performance and Optimizations of Bl,,)k,.d

Algorithms", Proceedings of the Fourth [nternational Conference on Architectural Support fr

Programming Languages and Operating Systems. April, 1991.

[27] Lenoski, D., Laudon, J., Gharachorloo, K., Weber, Wolf-Dietrich. Gupta, A_. Henne'ssy. J

Horowitz, M., and Lam, M.. "The Stanford DASH multiprocessor-. IEEE ('omputer. 23(3) 63-

79. March, 1992.

[281 Lenoski. D., Laudon, J., Joe. T., Nakahira. D., Stevens, L . Gupta. A., and Hennessy. J . "The
DASH prototype: logic overhead and performance", to appear in IEEE Transactions on Parallel

and Distributed Systems, 1992.

[29] Lewis, J., Peyton, B., and Pothen. A., "A fast algorithm for re-ordering sparse matrices for

parallel factorization", SIAM Journal on Scientific and Statistical Compuhng. 10: 1146-1173,

1989.

[30] Liu, J., "Modification of the minimum degree algorithm by multiple elimination". .4CM Trans-
actions on Mathematical Software, 12(2): 127-148. 1986.

[31) Liu, J., "The multifrontal method and paging in sparse Cholesky factorization", ACM Trans-

actions on Mathematical Software, 15(4): 310-325, 1989.

[32] Liu, J., "On the storage requiro.went of the out-of-core multifrontal method for sparse factor-

ization", ACM Transactions on Mathematical Software, 12(4), 1987.

[33] Liu, J., "Reordering sparse matrices for parallel elimination", Parallel Computing, 11(1): 73-91,

1989.

[34] Lucas, R. Solving planar systems of equations of distributed-memory multiprocessors, PhD the-
sis, Stanford University, 1988.

[35] Mowry, T., and Gupta, A., "Tolerating latency through software-controlled prefetching in

shared-memory multiprocessors", Journal of Parallel and Distributed Computing, June. 1991

[.36] Ng, E.G., and Peyton, B.W , A supernodal Cholesky factorization algorithm for shared-memory

multiprocessors, Technical Report ORNL/TM-11814. Oak Ridge National Laboratory April

1991.



BIBLIOGRAPHY 1 4

[37] Pothen, A._ and Sun. C.. A distributed inuttifrontal algorithm using chque treer. ', irnell 'I"r?

Center Report CTC9gTR72. Cornell Iniversity, August. 1991

[38] Rothberg. E., and Gupta, A.. "Efficient Sparse Matrix Factorizatiorn on Hierarchical M,'m-

ory Workstations- Exploiting the Memory Hierarchy". AC4M Transactions on Mathematzial

Software, 17(2):313-334. 1991.

[39] Rothberg, E., and Gupta. A.. An evaluation of left-looking, right-looking, and multifrmiztal 'iq)

proaches to sparse Cholesky factorization on hierarchical-memory machines. Technical R'pT,,rt

STAN-CS-91-1377, Stanford University. 1991. Accepted for publication in the Internatlrn J4,ior-

nal of High-Speed Computing.

[40] Rothbeig, E.. and Gupta, A., �Techniques for improving the performiance of sparse matrix

factorization on multiprocessor workstations". Proceedings of Supercomputing '90, p 232-243

November, 1990.

[41] Rothberg, E., Gupta, A., Ng, E., and Peyton. B., "Parallel sparse ('holesky factorization algo-

rithms for shared-memory multiprocessor systems". Proceedings of the Seventh IMA (S Inter-

national Conference on Computer Methods for Partial Differential Equations. 1992.

[42] Schreiber, R., "A new implementation of sparse Gaussian elimination", ACM Transactions (on

Mathematical Software, 8:256-276, 1982.

[431 Schreiber, R., "Are sparse matrices poisonous to highly parallel machines'", in Workshop "n

Sparse Matrix Computations: Graph Theory Issues and Algorithms, 1992.

[44] van de Geijn, R., Massively parallel LINPACK benchmark on the Intel Touchstone Drlta and

aPSC1860 systems, Technical Report CS-91-28, University of Texas at Austin, August. 1991

[45] Venugopal, S., and Naik, V.K., "Effects of partitioning and scheduling sparse matrix factor-

ization on communication and load balance", Proceedings of Supercomputing '91, November.

1991.

[46] von Eicken, T., Culler, D., Goldstein, S., and Schauser, K., "Active messages: a mechanism for

integrated communication and computation", Proceedings of the 19th International Symposium

on Computer Architecture, May, 1992.

[47] Wolf, M., and Lam, M., "A data locality optimizing algorithm", Proceedings of the 1991 SIG,'-

PLAN Conference on Programming Language Design and Implementation. June, 1991.


